Date Received: Aug 31, 2020
Date Published: Aug 10, 2021
Views
Download
Section:
How to Cite:
Effects of Culture Conditions on the Antibacterial Activity of Streptomyces Spp. against Erwinia Spp. Causing Soft Rot Disease on Asparagus Officinalis
Keywords
Antibacterial activity, Asparagus officinalis, Erwinia spp., Soft rot disease, Streptomyces spp.
Abstract
Erwinia is a genus of Enterobacteriacea containing mostly pathogens, which cause soft rot disease in many ornamental plants and crops, including Asparagus officinalis. Chemical treatments to control Erwinia have lost their attractiveness because of the development of resistant strains and the negative impacts on the environment and human health. Therefore, the study of biological controls of soft rot disease has gained great importance. There are several types of microorganisms that show activity against Erwinia spp. such as Pseudomonas fluorescence, Bacillus subtilis, and Streptomyces spp. Among them, Streptomyces spp. are found to be the most effective control agents. In this study, 64 isolates of Streptomyces were screened for their antibacterial activity against Erwinia spp. The results indicated that 18 isolates showed an antagonistic reaction against Erwinia spp. Among them, isolate D5.1 showed the highest inhibition activity. In addition, the morphological and antibacterial activities of isolate D5.1 grown in different conditions were also characterized.Â
References
Abdallah M. E., Haroun S. A., Gomah A. A., El-Naggar N. E. & Badr H. H. (2013). Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Journal Archives of Phytopathology and Plant Protection. 46(15): 1797-1808.
Aghighi S., Shahidi Bonjar G. H., Rawashdeh R., Batayneh S. & Saadoun I. (2004). First report of antifungal spectra of activity of Iranian actinomycetes strains against Alternaria solani, Alternaria alternate, Fusarium solani, Phytophthora megasperma, Verticillium dahliae and Saccharomyces cerevisiae. Asian Journal of Plant Sciences. 3(4): 463-471.
Bergey D. H. & Holt J. G. (2000). Bergey’s manual of determinative bacteriology (9th ed.). Philadelphia: Lippincott Williams and Wilkins.
Bhavana M., Talluri V. P. & Kumar K. S. (2014). Optimization of culture conditions of Streptomyces carpaticus (MTCC-11062) for the production of antimicrobial compound. Interational Journal of Pharmacy and Pharmaceutical Sciences. 6: 281-285.
de Lima Procópio R. E., da Silva. I. R., Martins M. K., de Azevedo R. L. & de Araújo J. M.(2012). Antibiotics produced byStreptomyces. The Brazilian Journal of Infectious Diseases. 16(5): 466-471.
Dhingra O. D. & Sinclair J. B. (1995). Basic plant pathology methods. CRC press: USA., pp 287-296, 390-391.
El-Karkouri A., El-Hassani F. Z., El-Mzibri M., Benlemlih M. & El-Hassouni M. (2010). Isolation and identification of an actinomycete strain with a biocontrol effect on the phytopathogenic Erwinia chrysanthemi 3937VIII responsible for soft rot disease. Annals of Microbiology. 60: 263-268.
Gopi R., Ramakrishna R. & Rajagopal A. (2011). Optimization of culture conditions of Streptomyces rochei (MTCC 10109) for the production of antimicrobial metabolites. Egyptian Journal of Biology. 13: 21-29.
Holkar S. K., Begde D. N., Nashikkar N. A., Kadam T. A. & Upadhyay A. A. (2017). Optimization of some culture conditions for improved biomas and antibiotic production by Streptomyces spectabilis isolated from soil. International Journal of Pharmaceutical Sciences and Research. 4(8): 2980-2987.
Islam Md. R., Jeong Y. T., Ryu Y. J., Song C. H. & Lee Y. S. (2009). Isolation, identification and optimal culture conditions of Streptomyces albidoflavus C247 producing antifungal agents against rhizoctonia solani AG2-2. Mycobiology. 37(2): 114-120.
Kawato M. & Shinobu R. (1959). A simple technique for the microscopical observation. Memoirs of the Osaka University Liberal Arts and Education: 114.
Kiviharju K., Leisola M. & Eerikäinen T. (2004). Optimization of Streptomyces peucetius var. Caesius N47 cultivation and epsilon-rhodomycinone production using experimental designs and response surface methods. Journal of Industrial Microbiology & Biotechnology. 31(10): 475-481.
Kovácsová S., Javoreková S., Medo J., Charousová I., Elbl J. & Plošek L. (2015). Characteristic of Streptomyces species with antimicrobial activity against selected phytopathogenic bacteria and fungi. Journal of Microbiology Biotechnology Food Sciences. 5(1): 55-59.
Oskay M., Tamer A. U. & Azeri C. (2004). Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. African Journal of Biotechnology. 3(9): 441-446.
Pudi N., Varikuti. G. D., Badana A. K., Gavara M. M., Kumari S. & Malla R. (2016).. Studies on Optimization of Growth Parameters for Enhanced Production of Antibiotic Alkaloids by Isolated Marine actinomycetes. Journal of Applied Pharmaceutical Science. 6(10): 181-188.
Nature Gate (2013). Asparagus officinalis. Retrieved from www.luontoportti.com/suomi/en/kukkakasvit /asparagus on December 9, 2020.
Nguyen Xuan Canh, Nguyen Thi Khanh & Pham Hong Hien (2017). Characterization of Actinomyces strain with bioactivity against Erwinia carotovora causing soft rot disease on some crops. Vietnam Journal of Agricultural Science and Technology. 7(80): 41-46 (in Vietnamese).
Pandey A., Shukla A. & Majumdar S. K. (2005). Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus M27 for the production of an antibacterial antibiotic. African Journal of Biotechnology. 4: 909-910.
Palanichamy V., Hundet A., Mitra B. & Reddy N. (2011). Optimization of cultivation parameters for growth and pigment production by Streptomyces spp. isolated from marine sediment and rhizosphere soil. International Journal of Plant, Animal and Environmental Sciences. 1: 158-170.
Reddy N. G., Ramakrishna D. P. N. & Rajagopal S. V. (2011). Optimization of culture conditions of Streptomyces rochei (MTCC 10109) for the production of antimicrobial metabolites. Egyptian Journal of Biology. 13: 21-29.
Salem E. A & El-Shafea Y. M. A. (2018). Biological control of potato soft rot caused by Erwinia carotovora subsp. Carotovora. Egyptian Journal of Biological Pes Control. 28: 94.
Singh L. S., Baruah I. & Bora T. C. (2006). Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities. Biotechnology. 5(2): 217-221.
Smith M. A., Mccolloch L. P. & Friedman B. A. (1982). Market Diseases of Asparagus, Onions, Beans, Peas, Carrots, Celery, and Related Vegetables. Agriculture handbook number 303, United States Department of Agriculture.
Vanneste J. L. & Yu J. (1996). Biological control of fire blight using Erwinia herbicola Eh252 and Pseudomonas fluorescens A506 separately or in combination. Acta Horticulturae Journal. 411: 351-353.
Yu J., Liu Q. & Liu Q. (2008). Effect of liquid culture requirements on antifungal antibiotic production by Streptomyces rimosus MY02. Bioresource Technology. 99: 2087-2091.
Zamanian S., Bonjar G. H. S. & Saadoun I. (2005). First report of antibacterial properties of a new strain of Streptomyces plicatus (strain 101) against Erwinia carotovora subsp. carotovora from Iran. Biotechnology. 4(2): 114-120.