Date Received: Jun 18, 2020
Date Published: Mar 30, 2022
Views
Download
Section:
How to Cite:
Phytochemical Analysis and Antioxidant and Alpha-glucosidase Inhibitory Activities of the Stem Bark of Dialium cochinchinense Pierre
Keywords
Antioxidant, Caesalpinioideae, Dialium cochinchinense, Phytochemical, α-glucosidase
Abstract
The purpose of this study was to determine the phytochemical compositions and to evaluate the biological activity of the stem bark of Dialium cochinchinense. The phytochemical analysis showed the presence of steroids, terpenoids, anthraquinones, saponins, and phenolics in the stem bark of D. cochinchinense. The optimal extraction conditions were 70% ethanol at 30°C for 40min with a material/solvent ratio of 1/20. Under the optimal conditions, the corresponding predicted response value for the total phenolic content was 100.80 ± 0.40 mg GAE/g DW. The evaluation of antioxidant activity indicated that the polyphenol-rich extract was a good source of antioxidants as measured by the DPPH assay with the IC50 of 3.81 ± 0.58 μg mL-1. The extract also demonstrated a strong a-glucosidase inhibitory activity with the IC50 value of 2.14 ± 0.05 μg/mL. Therefore, D. cochinchinense could be useful as a potential preventive intervention for free radicals in mediated diseases as well as an antioxidant drug and a potential source in treating diabetes mellitus in the pharmaceutical industry.
References
Abesundara K. J., Matsui T. & Matsumoto K. (2004). α-Glucosidase inhibitory activity of some Sri Lanka plant extracts, one of which, Cassia auriculata, exerts a strong antihyperglycemic effect in rats comparable to the therapeutic drug acarbose. Journal of Agricultural and Food Chemistry. 52(9): 2541-2545.
Adegboye M., Akinpelu D. & Okoh A. (2008). The bioactive and phytochemical properties of Garcinia kola (Heckel) seed extract on some pathogens. African Journal of Biotechnology. 7(21): 3934-3938.
Adeleye A. O., Ajiboye T. O., Iliasu G. A., Abdussalam F. A., Balogun A., Ojewuyi O. B. & Yakubu M. T. (2014). Phenolic extract of Dialium guineense pulp enhances reactive oxygen species detoxification in aflatoxin B1 hepatocarcinogenesis. Journal of Medicinal Food. 17(8): 875-885.
Al-Laith A. A., Alkhuzai J. & Freije A. (2019). Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arabian Journal of Chemistry Volume 12(8): 2365-2371.
Anand Priya V. V. M., Kranthi K., Punnagai K. & David D. C. (2019). Evaluation of Alpha-Glucosidase Inhibitory Activity of Vinca Rosea. Biomedical and Pharmacology Journal. 12(2): 783-786.
Awantu A. F., Lenta B. N., Bogner T., Fongang Y. F., Ngouela S., Wansi J. D., Tsamo E. & Sewald N. (2011). Dialiumoside, an Olean-18-ene Triterpenoid from Dialium excelsum. Zeitschrift für Naturforschung B. 66(6): 624-628.
Ayessou N. C., Ndiaye C., Cisse M., Gueye M., Sakho M. & Dornier M. (2014). Nutrient composition and nutritional potential of wild fruit Dialium guineense. Journal of Food Composition and Analysis. 34(2): 186-191.
Balandrin M. F., Klocke J. A., Wurtele E. S. & Bollinger W. H. (1985). Natural plant chemicals: sources of industrial and medicinal materials. Science. 228(4704): 1154-1160.
Bui L. T. K., Nguyen Q. T., Dao L. M., Nguyen H. L., Lam M. V. & Hoang C. T. (2019). Evaluation of antimicrobial, antioxidant and cytotoxic activities of Dialium cochinchinensis seed extract. Indian Journal of Pharmaceutical Sciences. September-October: 975-980.
Cai Y., Luo Q., Sun M. & Corke H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences 74: 2157-2184.
Chew K., Khoo M., Ng S., Thoo Y., Aida W. W. & Ho C. (2011). Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. International Food Research Journal. 18(4): 1427.
Chirinos R., Rogez H., Campos D., Pedreschi R. & Larondelle Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology. 55(2): 217-225.
David A.A., Olaniyi A. T., Mayowa A. O., Olayinka A. A & Anthony O. I (2011). Anti-Vỉbrio and preliminary phytochemical characteristics of crude methanolic extract of the leaves of Dialium guineense (Wild). Journal of Medicinal Plant Reasearch. 5(11): 2398-2404.
El-manawaty M. & Gohar L. (2018). In vitro alpha-glucosidase inhibitory activity of Egyptian plant extracts as an indication for their antidiabetic activity. IN VITRO. 11(7): 360-367.
Handique J. G., Gogoi D. (2016). Antioxidant Activities of the Medicinal Plants Used for Preparation of Fermentation Cakes of “Haanj”, the Rice Based Alcoholic Beverage of Ahom Community People of Assam, India. International Journal of Pharmacognosy and Phytochemical Research. 8(2): 217-222.
IDF (2017). IDF Diabetes Atlas, 8th edition. International Diabetes Federation. Pages 150 pages.
Ijoma K. & Ajiwe V. (2017). Phytochemical Screening of Dialium Indum Leaf extract (Velvet Tarmarind). International Journal of Phytopharmacy. 7(1): 06-13.
Iwai K., Kim M.-Y., Onodera A. & Matsue H. (2006). α-Glucosidase Inhibitory and Antihyperglycemic Effects of Polyphenols in the Fruit of Viburnum dilatatum Thunb. Journal of agricultural and food chemistry. 54(13): 4588-4592.
Joycharat N., Issarachote P., Sontimuang C. & Voravuthikunchai S. P. (2018). Alpha-glucosidase inhibitory activity of ethanol extract, fractions and purified compounds from the wood of Albizia myriophylla. Natural Product Research. 32(11): 1291-1294.
Junior M. J. d. A. F., Pinto R. B. & Mansano V. D. F. (2016). A Taxonomic Revision of the genus Dialium (Leguminosae: Dialiinae) in the Netotropics. Phytotaxa. 283(2): 123-142.
Kossah R., Nsabimana C., Zhang H. & Chen W. (2010). Optimization of extraction of polyphenols from Syrian sumac (Rhus coriaria L.) and Chinese sumac (Rhus typhina L.) fruits. Research Journal of Phytochemistry. 4(3): 146-153.
Lapornik B., Prošek M. & Wondra A. G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering. 71(2): 214-222.
Lee M. Y., Choi D. S., Lee M. K., Lee H. W., Park T. S., Kim D. M., Chung C. H., Kim D. K., Kim I. J. & Jang H. C. (2014a). Comparison of acarbose and voglibose in diabetes patients who are inadequately controlled with basal insulin treatment: randomized, parallel, open-label, active-controlled study. Journal of Korean Medical Science. 29(1): 90-97.
Lee S., Mediani A., Nur Ashikin A., Azliana A. & Abas F. (2014b). Antioxidant and α-glucosidase inhibitory activities of the leaf and stem of selected traditional medicinal plants. International Food Research Journal. 21(1): 165-172.
Li J.-K., Liu X.-D., Shen L., Zeng W.-M. & Qiu G.-Z. (2016). Natural plant polyphenols for alleviating oxidative damage in man: Current status and future perspectives. Tropical Journal of Pharmaceutical Research. 15(5): 1089-1098.
Liu F. F., Ang C. Y. & Springer D. (2000). Optimization of extraction conditions for active components in Hypericum perforatum using response surface methodology. Journal of Agricultural and Food Chemistry. 48(8): 3364-3371.
Liu S., Yu Z., Zhu H., Zhang W. & Chen Y. (2016). In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea. BMC Complementary and Alternative Medicine. 16(1): 378 (8 pages).
Liyana-Pathirana C. & Shahidi F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry. 93(1): 47-56.
Malik E. M. & Müller C. E. (2016). Anthraquinones as pharmacological tools and drugs. Medicinal Research Reviews. 36(4): 705-748.
Maulana T., Falah S. & Andrianto D. (2019). Total phenolic content, total flavonoid content, and antioxidant activity of water and ethanol extract from Surian (Toona sinensis) leaves. IOP Conference Series: Earth and Environmental Science. IOP Publishing. 012021.
Moradi-Afrapoli F., Asghari B., Saeidnia S., Ajani Y., Mirjani M., Malmir M., Bazaz R. D., Hadjiakhoondi A., Salehi P. & Hamburger M. (2012). In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. DARU Journal of Pharmaceutical Sciences. 20(1): 37 (6 pages).
Mwamatope B., Tembo D., Chikowe I., Kampira E., Nyirenda C. (2020). Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African. 9(2020): e00481.
Nedyalkov P., Kaneva M., Mihaylova D., Kostov G. & Kemilev S. (2015). Influence of the ethanol concentration on the antioxidant capacity and polyphenol content of Alchemilla mollis extracts. Comptes rendus de l’Académie bulgare des Sciences. 68(12): 1491-502.
Niyi O. H. (2015). Analytical and Nutritional Evaluation of Velvet Tamarind (Dialium guineense) Pulps. American Chemical Science Journal. 6(2): 69-76.
Ogu G. I., Ezeadila J. & Ehiobu J. M. (2013). Antioxidant and antimicrobial activities of Dialium guineense (Willd) leaf extract. Pharmacy and Pharmacology Research. 1(1): 1-7.
Oluwole-Banjo A. K. (2019). Phytochemical and antioxidant properties of methanolic extract of pulp, seed, leaf án stem bark of velvet tamarind (Dialium guineense) plant. Journal of Underutilized Legumes. 1(1):159-168.
Orji J., Alo M., Anyim C. & Okonkwo E. (2012). Antibacterial activities of crude leaf and bark extracts of “icheku” Dialium guineense on bacterial isolates from bronchitis patients. IOSR Journal of Pharmacy and Biological Science 1: 21-25.
Patocka J. (2003). Biologically active pentacyclic triterpenes and their current medicine signification. Journal of Applied Biomedicine. 1(1): 7-12.
Phan T. A. D., Nguyen X. H., Nguyen T. N., Tran L. Q., & Nguyen T. T. M. (2012). Study on DPPH Free Radical Scavenging and Lipid Peroxidation Inhibitory Activities of Vietnamese Medicinal Plants. Natural Product Sciences 18(1):1-7.
Pinelo M., Tress A. G., Pedersen M., Arnous A. & Meyer A. S. (2007). Effect of cellulases, solvent type and particle size distribution on the extraction of chlorogenic acid and other phenols from spent coffee grounds. American Journal Food Technology 2(7): 641-651.
Qaisar M. N., Chaudhary B. A., Sajid M. U. & Hussain N. (2014). Evaluation of α-glucosidase inhibitory activity of dichloromethane and methanol extracts of Croton bonplandianum Baill. Tropical Journal of Pharmaceutical Research. 13(11): 1833-1836.
Reinehr T. (2013). Type 2 diabetes mellitus in children and adolescents. World Journal of Diabetes. 4(6): 270.
Roglic G. (2016). WHO Global report on diabetes: A summary. International Journal of Noncommunicable Diseases. 1(1): 3.
Saxena A. & Vikram N. K. (2004). Role of selected Indian plants in management of type 2 diabetes: a review. The Journal of Alternative and Complementary Medicine. 10(2): 369-378.
Schmidt L. H. & Nguyen V. A. (2005). Dialium cochichinense Pierre. Seed Leaflet. 91: 1-2.
Shi J., Yu J., Pohorly J., Young J. C., Bryan M. & Wu Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Journal of Food, Agriculture and Environment. 1(2): 42-47.
Siangu B. N., Sauda S., John M. K. & Njue W. M. (2019). Antioxidant activity, total phenolic and flavonoid content of selected Kenyan medicinal plants, sea algae and medicinal wild mushrooms. African Journal of Pure and Applied Chemistry. 13(3): 43-48.
Silva E., Rogez H. & Larondelle Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology. 55(3): 381-387.
Singleton V. L. & Rossi J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16(3): 144-158.
Song F-L., Gan R-Y., Zhang Y., Xiao Q., Kuang L. & Li H-B. (2010). Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. International Journal Molecular Sciences. 11:2362-2372; doi:10.3390/ijms11062362.
Spigno G., Tramelli L. & De Faveri D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering. 81(1): 200-208.
Stoica R., Velea S., Ilie L., Calugareanu M., Ghimis S. B. & Ion R.-M. (2013). The influence of ethanol concentration on the total phenolics and antioxidant activity of Scenedesmus opoliensis algal biomass extracts. Revista de Chimie. 64(3): 304-306.
Tabart J., Kevers C., Pincemail J., Defraigne J.-O. & Dommes J. (2009). Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chemistry. 113(4): 1226-1233.
Waszkowiak K. & Gliszczyńska-Świgło A. (2016). Binary ethanol–water solvents affect phenolic profile and antioxidant capacity of flaxseed extracts. European Food Research and Technology. 242(5): 777-786.
Xiao J., Kai G., Yamamoto K. & Chen X. (2013). Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect. Critical Reviews in Food Science and Nutrition. 53(8): 818-836.
Zhang Z.-S., Li D., Wang L.-J., Ozkan N., Chen X. D., Mao Z.-H. & Yang H.-Z. (2007). Optimization of ethanol–water extraction of lignans from flaxseed. Separation and Purification Technology. 57(1): 17-24.
Zwenger S. & Basu C. (2008). Plant terpenoids: applications and future potentials. Biotechnology and Molecular Biology Reviews. 3(1): 1-7.