Effects of Salinity Stress on the Growth, Physiology, and Yield of Soybean (Glycine max (L.) Merrill)

Date Received: Dec 08, 2020

Date Published: Aug 10, 2021

Views

2016

Download

458

How to Cite:

Linh, N., Cham, L., & Thang, V. (2021). Effects of Salinity Stress on the Growth, Physiology, and Yield of Soybean (Glycine max (L.) Merrill). Vietnam Journal of Agricultural Sciences, 4(2), 1043–1055. https://doi.org/10.31817/vjas.2021.4.2.05

Effects of Salinity Stress on the Growth, Physiology, and Yield of Soybean (Glycine max (L.) Merrill)

Nguyen Thi Linh 1 , Le Thi Tuyet Cham (*) 2   , Vu Ngoc Thang 2

  • Corresponding author: lttcham@vnua.edu.vn
  • 1 Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academic of Science and Technology, Hanoi 122103, Vietnam
  • 2 Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi 13100, Vietnam
  • Keywords

    Growth, physiology, salinity, soybean, yield

    Abstract


    This study was conducted to evaluate the salt tolerance ability of two soybean cultivars under salinity conditions using a selection of growth and physiological parameters. Three weeks after germination, plants began being treated with either a 100 mM concentration of NaCl in Hoagland solution or a non-salinity (0 mM NaCl) solution. The results showed that the plant height, number of leaves, leaf area index, and shoot and root biomasses were significantly reduced under salt conditions. A similar tendency was observed in several physiological parameters (SPAD, Fv/Fm). Since all the salt-treated plants of the D8 cultivar were dead after 40 days under the 100 mM NaCl treatment, the yield of D8 could not be obtained, while the treated plants of the D140 cultivar experienced a marked decrease in yield compared to the control plants. In this study, we identified that the D140 soybean cultivar had a better salt tolerance than the D8 soybean cultivar at a 100 mM NaCl concentration.

    References

    Bado S., Forster B. P., Ghanim A., Jankowicz-Cieslak J., Berthold G. & Luxiang L. (2016). Protocols for pre-field screening of mutants for salt tolerance in rice, wheat and barley. Springer Nature: 3-4.

    Cai. Z. Q. & Gao Q. (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biology. 20: 70.

    El Sabagh A., Abd O., Saneoka H. & Barutçular C. (2015a). Comparative physiological study of soybean (Glycine max L.) cultivars under salt stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 25(3): 269-284.

    El Sabagh A., Omar A., Saneoka H. & Barutçular C. (2015b). Physiological performance of soybean germination and seedling growth under salinity stress. Dicle University Institute of Natural Applied Science Journal. 4(1): 6-15.

    General Statistics Office of Vietnam (2018). Agriculture, Forestry and Fishery 2018. Retrieved from https://www.gso.gov.vn/en/agriculture-forestry-and-fishery/ on May 25, 2021.

    Ghassemi-Golezani K., Taifeh-Noori M., Oustan S. & Moghaddam M. (2009). Response of soybean cultivars to salinity stress. Journal of Food, Agriculture and Environment. 7 (2): 401-404.

    Gibbs B. F., Zougman A., Masse R. & Mulligan C. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International. 37(2): 123-131.

    Greenway H. & Munns R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual review of plant physiology. 31(1): 149-190.

    Han H. S. & Lee K. D. (2005). Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Research Journal of Agriculture and Biological Sciences. 1(3): 216-221.

    Hanin M., Ebel C., Ngom M., Laplaze L. & Masmoudi K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in plant science. 7: 1787.

    Hill J., Nelson E., Tilman D., Polasky S. & Tiffany D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences. 103(30): 11206-11210.

    Hoagland D. R. & Arnon D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station: 347 (2nd ed.).

    Huang L., Zeng A., Chen P., Wu C., Wang D. & Wen Z. (2018). Genomewide association analysis of salt tolerance in soybean [Glycine max (L.) Merr.]. Plant Breeding. 137(5): 714-720.

    Jain R. & Singh M. (1989). Factors affecting goatweed (Scoparia dulcis) seed germination. Weed Science: 766-770.

    Julkowska M. M. & Testerink C. (2015). Tuning plant signaling and growth to survive salt. Trends in Plant Science. 20(9): 586-594.

    Kavas M., Akça O. E., Akçay U. C., Peksel B., Eroğlu S., Öktem H. A. & Yücel M. (2015). Antioxidant responses of peanut (Arachis hypogaea L.) seedlings to prolonged salt-induced stress. Archives of Biological Sciences. 67(4): 1303-1312.

    Ledesma F., Lopez C., Ortiz D., Chen P., Korth K. L., Ishibashi T., Zeng A., Orazaly M. & Florez-Palacios L. (2016). A Simple Greenhouse Method for Screening Salt Tolerance in Soybean. Crop Science. 56(2): 585-594.

    Lee J. D., Smothers S. L., Dunn D., Villagarcia M., Shumway C. R., Carter Jr T. E. & Shannon J. G. (2008). Evaluation of a simple method to screen soybean genotypes for salt tolerance. Crop Science. 48(6): 2194-2200.

    Luo Q., Yu B. & Liu Y. (2005). Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of plant physiology. 162(9): 1003-1012.

    Naumann J. C., Young D. R. & Anderson J. E. (2008). Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environmental and Experimental Botany. 63(1): 402-409.

    Neumann P. (1997). Salinity resistance and plant growth revisited. Plant, Cell & Environment. 20(9): 1193-1198.

    Pantalone V. R., Kenworthy W. J., Slaughter L. H. & James B. R. (1997). Chloride tolerance in soybean and perennial Glycine accessions. Euphytica. 97(2): 235-239.

    Richards R. A., Dennett C. W., Qualset C. O., Epstein E., Norlyn J. D. & Winslow M. D. (1987). Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Research. 15(3-4): 277-287.

    Shannon M. C. (1985). Principles and strategies in breeding for higher salt tolerance. In: Biosalinity in Action: Bioproduction with Saline Water. Springer, 227-241.

    Shu K., Qi Y., Chen F., Meng Y., Luo X., Shuai H., Zhou W., Ding J., Du J. & Liu J. (2017). Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Frontiers in plant science. 8: 1372.

    Tunçturk M., Tunçturk R. & Yasar F. (2008). Changes in micronutrients, dry weight and plant growth of soybean (Glycine max L. Merrill) cultivars under salt stress. African Journal of Biotechnology. 7(11): 1650-1654.

    Valliyodan B. & Nguyen H. T. (2008). Genomics of abiotic stress in soybean. Springer, New York, NY: 343-372.

    Yang J. & Blanchar R. W. (1993). Differentiating chloride susceptibility in soybean cultivars. Agronomy Journal. 85(4): 880-885.