Polymorphism Candidate Genes of Lien Minh Chickens

Date Received: Oct 17, 2018

Date Accepted: Oct 22, 2018

Date Published: Oct 22, 2018

Views

3059

Download

550

Section:

ENGINEERING AND TECHNOLOGY

How to Cite:

Tran, B. N., Nguyen, D., Vu, Q., Pham, G., Nguyen, L., Dinh, N. T., & Nguyen, D. T. (2018). Polymorphism Candidate Genes of Lien Minh Chickens. Vietnam Journal of Agricultural Sciences, 1(2), 174–181. https://doi.org/10.31817/vjas.2018.1.2.07

Polymorphism Candidate Genes of Lien Minh Chickens

Binh Nguyen Thi Tran (*) 1 , Duc Huu Nguyen 1 , Quy Duc Vu 1 , Giang Thu Pham 2 , Linh Manh Nguyen 3 , Ngoc Thuy Thi Dinh 4   , Dieu Thuy Thi Nguyen 4

  • Corresponding author: ttbnguyen@vnua.edu.vn
  • 1 Faculty of BiotechnolgyBiotechnology, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
  • 2 Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
  • 3 Institute of Marine Environment and Resources, Hai Phong 181810, Vietnam
  • 4 Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 122000, Vietnam
  • Keywords

    Lien Minh chicken, PCR-RFLP, candidate genes, single nucleotide polymorphisms

    Abstract


    Lien Minh chicken is an indigenous breed with several favorable properties, such as high productivity and good meat quality, and is associated with the economic development of the people in the Lien Minh village, Cat Hai, Hai Phong. The objective of the current research was to investigate the single nucleotide polymorphisms (SNPs) of candidate genes, which might be associated with broodiness and egg production traits. Ninety Lien Minh chicken individuals were genotyped for five SNPs of chicken prolactin (PRL), Vasoactive Intestinal Peptide (VIP), neuropeptide Y gene (NPY), growth hormone (GH), and growth hormone receptor (GHR) genes. Blood samples were used for DNA extraction and then for genotyping by the PCR-RFLP method. The allele frequencies obtained were as follows: 0.19 and 0.81 for alleles C and T (PRL-C2161G), respectively; in VIP (G5138982T), 0.55 for the G allele and 0.45 for T; in GH-SacI (the intron 4), 0.02 for A and 0.98 for B; and in GHR-NspI, 0.82 for C and 0.18 for T. The NPY gene (four nucleotide indel) had the frequencies of 0.86 for I and 0.14 for D. The four studied polymorphic loci (PRL, VIP, NPY, and GH) were in Hardy-Weinberg equilibrium in the Lien Minh chicken population. These are the initial results, which can be used to analyze the correlation of molecular markers and egg production traits in Lien Minh chickens.

    References

    Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A. and Struhl K. (1995). Short Protocols in Molecular Biology 3rd ed. John Wilet & Sons Inc, New York.

    Babak E. and Ghodrat R. M. (2009). Genomic growth hormone, growth hormone receptor and transforming growth factor β-3 gene polymorphism in breeder hens of Mazandaran native fowls. African Journal of Biotechnology. Vol 8 (14). pp. 3154-3159.

    Caldwell S. R., Johnson A. F., Yule T. D. and Grimes J. L. (1999). Increased egg production in juvenile turkey hens after active immunization with vasoactive intestinal peptide. Poultry Science. Vol 78. pp. 899-901.

    Cui J. X., Du H. L., Liang Y., Deng X. M., Li N. and Zhang X. Q. (2006). Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poultry Science. Vol 85. pp. 26-31.

    Doan B. H., Dang P. K., Tuan H. A. and Thinh N. H. (2016). Lien Minh chicken breed and live hood of people on Cat Hai Island district Hai Phong city Vietnam: Characterization and prospects. Animal Genetics and Breeding. Vol 209. pp. 26-31.

    Dunn I. C., Miao Y. W., Romanov M. N., Wilson P. W. and Walddington D. (2004). A study of association between genetic markers in candidate genes and reproductive traits in one generation of a commercial broiler breeder hen population. Heredity. Vol 92. pp. 128-134.

    El Halawani M. E., Silsby J. L. and Mauro L. J. (1990). Vasoactive intestinal peptide is a hypothalamic prolactin releasing neuropeptide in the turkey (Meleagris gallopavo). General and Comparative Endocrinology. Vol 78. pp. 66-73.

    El Halawani M. E., Silsby J. L., Rozenboim I. and Pitts G. R. (1995). Increased egg production by active immunizationagainst vasoactive intestinal peptide in the turkey (Meleagris gallopavo). Biology of Reproduction. Vol 52. pp. 179-183.

    El Halawani, M. E., Youngren O. M. and Pitts G. R. (1997). Vasoactive intestinal peptide as the avian prolactin releasing factor. In: Etches R. and Harvey S. (Ed.). Perspectives in Avian Endocrinology. The Society of Endocrinology, Bristol, United Kingdom. pp. 403-416.

    FAO (2007). The State of the World’s Animal Genetic Resources for Food and Agriculture, edited by Rischkowsky B. and Pilling Rome. Retrieved on January 2, 2017 at http://www.fao.org/docrep/010/ a1250e/a1250e00.htm.

    Feng X. P., Kuhnlein U., Aggrey S. E., Gavora J. S. and Zadworny D. (1997). Trait association of genetic markers in the growth hormone and the growth hormone receptor gene in a White Leghorn strain. Poultry Science. Vol 76 (12). pp. 1770-1775.

    Hilal E. M., Chen J. H. and Silverman A. J. (1996). Join migration of gonaldotropin-releasing hormone (GnRH) and neuropeptide Y (NPY) neurons from olfactory placode to central nervous system. Journal of Neurobiology. Vol 31. pp. 487-502.

    Hocking P. M., Bernard R., Wilkie R. S. and Goddard C. (1994). Plasma growth hormone and insulin-like growth factor-I (IGF-I) concentrations at the onset of lay in ad libitum ad restricted broiler breeder fowl. British Poultry Science. Vol 35. pp. 299-308.

    Johnson A., Yule T., Grimes J., Ficken M. and Christensen V. (1999). Increased egg production in juvenile turkey hens after active immunization with vasoactive intestinal peptide. Poultry Science. Vol 78. pp. 899-901.

    Kagya-Agyemang J. K., Shendan S. and Yinzuo B. (2012). Studies on the endocrine and neuroendocrine control of broodiness in the Yuehuang Hen. International Journal of Poultry Science. Vol 11. pp. 488-495.

    Kansaku N., Nakada A., Okabayashi H., Guemene D. and Kuhnlein U. (2003). DNA polymorphism in the chicken growth hormone gene: Association with egg production. Animal Science Journal. Vol 74. pp. 243-244.

    Kuhnlein U., Liu N., Weigend S., Gavora J.S., Fairfull W. and Zadworny D. (1997). DNA polymorphisms in the chicken growth hormone gene: response to selection for disease resistance and association with egg production. Animal Genetics. Vol 28. pp. 116-123.

    Kulibaba R. A. (2015). Polymorphism of growth hormone, growth hormone receptor, prolactin and prolactin receptor genes in connection with egg production in Poltava clay chicken. Agricultural Biology. Vol 50. pp. 198-207.

    Lau J. S., Yip C. W., Law K. M. and Leung F. C. (2007). Cloning and characterization of chicken growth hormone binding protein (cGHBP). Domestic Animal Endocrinology. Vol 33. pp. 107-121.

    Li H. F., Zhu W. Q., Chen K. W., Wu X., Tang Q. P., Gao Y. S., Song W. T., Xu W. J. and Xu H. L. (2009b). Polymorphism in NPY and IGF-I genes associate with reproductive traits in Wenchang chicken. African Journal of Biotechnology. Vol 8. pp. 4744-4748.

    Li H. F., Zhu W. Q., Chen K. W., Wu X., Tung Q. P. and Gao Y. S. (2008). Associations between GHR and IGF-1 gene polymorphisms, and reproductive traits in Wenchanf chickens. Turkish Journal of Veterinary and Animal Sciences. Vol 32 (4). pp. 281-285.

    Li H. F., Zhu W. Q., Chen K. W., Zhang T. J. and Song W. T. (2009a). Association of polymorphisms in the intron 1 of duck prolactin with egg performance. Turkish Journal of Veterinary and Animal Sciences. Vol 33. pp. 193-197.

    Makhsous S. G., Mirhoseini S. Z., Zamiri M. J. and Niazi A. (2013). Polymorphisms of growth hormone gene in a native chicken population: association with egg production. Bulletin of the Veterinary Institute in Pulawy. Vol 57. pp. 73-77.

    Monget P., Fabre S., Mulsant P., Lecerf F., Elsen J. M., Mazerbourg S., Pisselet C. and Monniaux D. (2002). Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals. Domestic Animal Endocrinology. Vol 23. pp. 139-154.

    Nagaraja S. C., Aggrey S. E., Yao J., Zadworny D., Fairfull R. W. and Kuhnlein U. (2000). Trait association of a genetic marker near the IGF-I gene in egg-laying chickens. The Journal of Heredity. Vol 91. pp. 150-156.

    Ngu N. T., Xuan N. H., Vu C. T., An N. T., Dung T. N. and Nhan N. T. H. (2015). Effects of genetic polymorphisms on egg production in indigenous Noi chicken. Journal of Experimental Biology and Agricultural Science. Vol 3 (4). pp. 487-493.

    Pierroz D. D., Catzeflis C., Aebi A. C. and Rivier J. E. (1996). Chronic administration of neuropeptide Y into the lateral ventricle inhibits both the pituitary-testicular axis and growth hormone and insulin-like growth factor I secretion in intact adult male rats. Endocrinology. Vol 137. pp. 3-12.

    Reddy I. J., David C. G. and Sarma P. V. (2002). Singh K The possible role of prolactin in laying performance and steroid hormone secretion in domestic hen (Gallus domesticus). General and Comparative Endocrinology. Vol 127. pp. 249-255.

    Reddy P. R. K. and Siegel P. B. (1977). Selection for body weight at eight weeks of age. Effects of the sex-linked dwarf gene. Poultry Science. Vol 56. pp. 1004-1013.

    Roberts R. D, Sharp P. J., Burt D. W. and Goddard C. (1994). Insulin-like growth factor-1 in the ovary of the laying hen: gene expression and biological actions on granulosa and thecal cell. General and Comparative Endocrinology. Vol 93. pp. 327-336.

    Rodriguez S., Gaunt T. R. and Day I. N. M. (2009). Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. American Journal of Epidemiology. Vol 169. pp. 505-514.

    Sharp P. J., Macnamee M. C., Talbotr R. T., Sterlingr R. J. and Hallt T. R. (2005). Aspects of the neuroendocrine control of ovulation and broodiness in the domestic hen. The Journal of Experimental Zoology. Vol 232. pp. 475-483.

    Sockman K. W., Schwabl H. and Sharp P. J. (2000). The role of prolactin in the regulation of clutch size and onset of incubation behavior in the American kestrel. Hormones and Behavior. Vol 38. pp. 168-176.

    Vu C. T. and Ngu N. T. (2016). Single nucleotide polymorphisms in candidate genes associated with egg production traits in native Noi chicken of Vietnam. International Journal of Plant, Animal and Environmental Sciences. Vol 6. pp. 162-169.

    Wang X., Day J. R. and Vasilatos-Younken R. (2001). The distribution of neuropeptide Y gene expression in the chicken brain. Molecular and Cellular Endocrinology. Vol 174. pp. 129-136.

    Xu H., Zeng H., Zhang D., Jia X., Luo C., Fang M., Nie Q. and Zhang X. (2011a). Polymorphisms associated with egg number at 300 days of age in chickens. Genetics and Molecular Research. Vol 10. pp. 2279-2289.

    Xu H., Zeng H., Luo C., Zhang D., Wang Q., Sun L., Yang L., Zhou M., Nie Q. and Zhang X. (2011b). Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg. BMC Genetics. Vol 12. pp. 33-42.

    Zhang L., Lin S., An L., Ma J., Qiu F., Jia R., Nie Q., Zhang D., Luo Q., Li T., Wang Z. and Zhang Z. (2016). Chicken GHR natural antisense transcript regulates GHR mRNA in LMH cells. Oncotarget. Vol 7 (45). pp 73607-73617.

    Zhou M., Du Y., Nie Q., Liang Y., Luo C., Zeng H. and Zhang X. (2010). Associations between polymorphisms in the chicken VIP gene, egg production and broody traits. British Poultry Science. Vol 51. pp. 195-203.