Expression of Zinc Finger Protein Zat12 from Arabidopsis thaliana in Escherichia coli

Date Received: Oct 26, 2018

Date Published: Jul 22, 2020

Views

2128

Download

570

Section:

ENGINEERING AND TECHNOLOGY

How to Cite:

Cham, L., Thang, V., Tuan, T., & Hang, V. (2020). Expression of Zinc Finger Protein Zat12 from Arabidopsis thaliana in Escherichia coli. Vietnam Journal of Agricultural Sciences, 3(1), 504–511. https://doi.org/10.31817/vjas.2020.3.1.03

Expression of Zinc Finger Protein Zat12 from Arabidopsis thaliana in Escherichia coli

Le Thi Tuyet Cham (*) 1 , Vu Ngoc Thang 1 , Tran Anh Tuan 1   , Vu Thi Thuy Hang 1

  • Corresponding author: lttcham@vnua.edu.vn
  • 1 Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
  • Keywords

    ZAT12, zinc finger protein, ZAT12 expression

    Abstract


    The C2H2 zinc finger protein ZAT12 has been classified as a plant core abiotic stress response gene in the early  response to multiple stresses. ZAT12 links the iron deficiency and oxidative stress responses through the direct interaction with/and negative regulation of a central regulator - FIT. For further research on the regulation of the ZAT12 protein in planta, a huge quantity of ZAT12 proteins is required to inject into mice for the generation of ZAT12 antiserum. In this study, the gene encoding the ZAT12 protein from Arabidopsis thaliana was cloned into the expression vector - pETBlue-2 and then overexpressed in E. coli T7. A high expression level was indicated by SDS-PAGE. Immunoblot demonstrated successful expression using a bacterial expression system.

    References

    Ben Daniel B. H., Cattan E., Wachtel C., Avrahami D., Glick Y., Malichy A., Gerber D. & Miller G. (2016). Plant Identification of novel transcriptional regulators of Zat12 using comprehensive yeast one-hybrid screens. Physiologia Plantarum. 157(4): 422-441.

    Cheong Y. H., Chang H. S., Gupta R., Wang X., Zhu T. & Luan S. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology. 129(2): 661-677.

    Ciftci-Yilmaz S. & Mittler R. (2008). The zinc finger network of plants. Cellular and Molecular Life Sciences. 65: 1150-1160.

    Davletova S., Schlauch K., Coutu J. & Mittler R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiology. 139(2): 847-856.

    De Abreu Neto J. B. & Frei M. (2015). Microarray meta-analysis focused on the response of genes

    involved in Redox Homeostasis to Diverse Abiotic stresses in rice. Frontiers in Plant Science. 6: 1260.

    Englbrecht C. C., Schoof H. & Böhm S. (2004). Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics. 5(1): 39.

    Fowler S. & Thomashow M. F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell. 14(8): 1675-1690.

    Gamsjaeger R., Liew C. K., Loughlin F. E., Crossley M. & Mackay J. P. (2007). Sticky fingers: zinc-fingers as protein-recognition motifs. Trends in Biochemical. Sciences. 32(2): 63-70.

    Iida A., Kazuoka T., Torikai S., Kikuchi H. & Oeda K. (2000). A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. The Plant Journal. 24(2): 191-203.

    Kagale S., Links M. G. & Rozwadowski K. (2010). Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiology. 152(3): 1109-1134.

    Kiełbowicz-Matuk A. (2012). Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses. Plant Science. 185-186: 78-85.

    Kreps J. A., Wu Y., Chang H. S., Zhu T., Wang X. & Harper J. F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology. 130(4): 2129-2141.

    Laemmli U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature. 227: 680-685.

    Le C. T. T., Brumbarova T., Ivanov R., Stoof C., Weber E., Mohrbacher J., Fink-Straube C. & Bauer P. (2016). Zinc finger of Arabidopsis thaliana 12 (ZAT12) interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) linking iron deficiency and oxidative stress responses. Plant Physiology. 170(1): 540-557.

    Miller G., Shulaev V. & Mittler R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum. 133(3): 481-489.

    Meissner R. & Michael A. J. (1997). Isolation and characterisation of a diverse family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and cDNAs. Plant Molecular Biology. 33(4): 615-624.

    Mittler R., Kim Y., Song L., Coutu J., Coutu A., Ciftci-Yilmaz S., Lee H., Stevenson B. & Zhu J. K. (2006). Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters. 580(28-29): 6537-6542.

    Peng J., Li Z., Wen X., Li W., Shi H., Yang L., Zhu H. & Guo H. (2014). Salt induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genetics. 10(10): e1004664.

    Rizhsky L., Davletova S., Liang H. & Mittler R. (2004). The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. Journal of Biological Chemistry. 279(12): 11736-11743.

    Rychlik W., Spencer W. J. & Rhoads R. E. (1990). Optimization of the annealing temperature for amplification in vitro. Nucleic Acids Research. 18(21): 6409-6412.

    Sambrook J. & Rusell D. W. (2001). Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press. 1(2-3):1-2344.

    Vanderauwera S., Zimmermann P., Rombauts S., Vandenabeele S., Langebartels C., Gruissem W., Inzé D. & Van Breusegem F. (2005). Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiology. 139(2): 806-821.

    Vogel J. T., Zarka D. G., Van Buskirk H. A., Fowler S. G. & Thomashow M. F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal. 41(2): 195-211.