Effects of Diet Composition on the Life-History Traits of Bactrocera Dorsalis (Hendel) (Diptera: Tephritidae)

Date Received: Nov 03, 2021

Date Published: Dec 30, 2022

Views

1132

Download

330

How to Cite:

Anh, T., Anh, L., Hieu, P., & Giang, H. (2022). Effects of Diet Composition on the Life-History Traits of Bactrocera Dorsalis (Hendel) (Diptera: Tephritidae). Vietnam Journal of Agricultural Sciences, 5(4), 1628–1637. https://doi.org/10.31817/vjas.2022.5.4.02

Effects of Diet Composition on the Life-History Traits of Bactrocera Dorsalis (Hendel) (Diptera: Tephritidae)

Than The Anh (*) 1 , Le Ngoc Anh 1 , Pham Thi Hieu 1   , Ho Thi Thu Giang 1

  • Corresponding author: httgiangnh@vnua.edu.vn
  • 1 Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
  • Keywords

    Diet composition, larval, development, body weight, reproduction

    Abstract


    Nutrient acquisition at the larval stage has significant impacts on the development, body weight, and fecundity of fruit flies. In this study, we examined the effects of diet composition on the life-history traits of the oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We reared the flies on four larval diets, namely three artificial diets, which had the main ingredients of sugar, brewer’s yeast, and preservatives; and one fruit-based diet, which had the main contents of ground guava, brewer’s yeast, and preservatives. The three artificial diets had varied yeast-to-sugar ratios (Y:S) of 5:1 in the protein-rich diet, 1.67:1 in the standard diet, and 1:3 in the sugar-rich diet. Differences in development time, pupal weight, adult weight, and fecundity of B. dorsalis were investigated. It was found that the development times of fruit flies on the protein-rich and fruit-based diets were shorter than those on the sugar-rich and standard diets. Pupae and adults in the fruit-based and standard diets were heavier than those from the protein-rich and sugar-rich diets. There was a strong effect of diet on the per-day fecundity whereby the flies in the fruit-based diet had the highest per-day fecundity, while the lowest per-day fecundity was in the sugar-rich diet. The per-day fecundity of the fruit flies on the standard and sugar-rich diets increased gradually from day 1 to day 15, while it decreased in the protein-rich and fruit-based diets.

    References

    Abdel-Hafez A. M., Mahmoud S. A. Z., El-Sawy M. & Ramadan E. M. (1977). Studies on protein production by yeasts: II. protein, non-protein nitrogen, and amino acid content of yeast strains. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 132(7): 631-640.

    Anagnostou C., Dorsch M. & Rohlfs M. (2010). Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomologia Experimentalis et Applicata. 136(1): 1-11.

    Bar-Peled L. & Sabatini D. M. (2014). Regulation of mTORC1 by amino acids. Trends in Cell Biology. 24(7): 400-406.

    Bui Minh Hong, Nguyen Thanh Van & Le Trung Dung (2019). Study on species composition of insect pest and alien insect pests at Hoang Hoa Tham commune, Chi Linh city, Hai Duong province. TNU Journal of Science and Technology. 202(09): 85-92.

    Bui Minh Hong & Pham Thi Viet Chinh (2018). The species composition of insect pests and natural enemies on guava trees at Gia Lam, Hanoi. TNU Journal of Science and Technology. 187(11): 63-68 (in Vietnamese).

    Cammack J. A. & Tomberlin J. K. (2017). The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects. 8(2): 56.

    Clarke A. R., Armstrong K. F., Carmichael A. E., Milne J. R., Raghu S., Roderick G. K. & Yeates D. K. (2005). Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annual Review of Entomology. 50: 293-319.

    Colasurdo N., Gélinas Y. & Despland E. (2009). Larval nutrition affects life history traits in a capital breeding moth. Journal of Experimental Biology. 212(12): 1794-1800.

    Ekesi S., Nderitu P. W. & Chang C. L. (2007). Adaptation to and Small-Scale Rearing of Invasive Fruit Fly Bactrocera invadens (Diptera: Tephritidae) on Artificial Diet. Annals of the Entomological Society of America. 100(4): 562-567.

    Fingar D. C. & Blenis J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 23(18): 3151-3171.

    Geister T. L., Lorenz M. W., Hoffmann K. H. & Fischer K. (2008). Adult nutrition and butterfly fitness: effects of diet quality on reproductive output, egg composition, and egg hatching success. Frontier in Zoology. 5: 10.

    Godjo A., Zadji L., Decraemer W., Willems A. & Afouda L. J. B. C. (2018). Pathogenicity of indigenous entomopathogenic nematodes from Benin against mango fruit fly (Bactrocera dorsalis) under laboratory conditions. 117: 68-77.

    Gu X., Cai P., Yang Y., Yang Q., Yao M., Idrees A., Ji Q., Yang J. & Chen J. (2018). The response of four braconid parasitoid species to methyl eugenol: Optimization of a biocontrol tactic to suppress Bactrocera dorsalis. Biological Control. 122: 101-108.

    Guillén D. & Sánchez R. (2007). Expansion of the national fruit fly control programme in Argentina. Springer Netherlands. 653-660.

    Güler P., Ayhan N., Koşukcu C. & ÖNDER B. Ş. (2015). The effects of larval diet restriction on developmental time, preadult survival, and wing length in Drosophila melanogaster. Turkish Journal of Zoology. 39(3): 395-403.

    Kaspi R., Mossinson S., Drezner T., Kamensky B. & Yuval B. (2002). Effects of larval diet on development rates and reproductive maturation of male and female Mediterranean fruit flies. Physiological Entomology. 27(1): 29-38.

    Kaspi R., Taylor P. W. & Yuval B. (2000). Diet and size influence sexual advertisement and copulatory success of males in Mediterranean fruit fly leks. Ecological Entomology. 25(3): 279-284.

    Kaufmann C., Reim C. & Blanckenhorn W. U. (2013). Size-dependent insect flight energetics at different sugar supplies. Biological Journal of the Linnean Society. 108(3): 565-578.

    Keawchoung P., Limohpasmanee V., Dokmaihom R., Imyim A. & Meecheepsom S. (2000). Field population studies of the Oriental fruit fly Bactrocera dorsalis (Hendel) for the SIT programme in Thailand. Area-wide control of fruit flies and other insect pests. Joint proceedings of the international conference on area-wide control of insect pests, 28 May-2 June, 1998 and the Fifth International Symposium on Fruit Flies of Economic Importance, Penang, Malaysia, 1-5 June, 1998. Penerbit Universiti Sains Malaysia. 601-605.

    Kemirembe K., Liebmann K., Bootes A., Smith W. A. & Suzuki Y. (2012). Amino acids and TOR signaling promote prothoracic gland growth and the initiation of larval molts in the tobacco hornworm Manduca sexta. PloS one. 7(9): e44429-e44429.

    Kim K., Jang T., Min K.-J. & Lee K. P. (2020). Effects of dietary protein:carbohydrate balance on life-history traits in six laboratory strains of Drosophila melanogaster. Entomologia Experimentalis et Applicata. 168(6-7): 482-491.

    Le Duc Khanh, Le Quang Khai, Nguyen Thi Thanh Hien, Thanh V. V., Trang V. T. T., Shanmugam V. & Pereira R. (2016). Area-wide suppression of Bactrocera fruit flies in dragon fruit orchards in Binh Thuan, Viet Nam. Proceedings of the 9th International Symposium on Fruit Flies of Economic Importance, 12-16 May 2014, Bangkok, Thailand. International Fruit Fly Steering Committee: 93-100.

    Le Thi Dieu & Nguyen Van Huynh (2009). Surveys on the species composition of insect pests, natural enemies and fruitflies on the Dragon fruit trees at Long An province. Can Tho University Journal of Science: 1-10 (in Vietnamese).

    Matzkin L. M., Johnson S., Paight C., Bozinovic G. & Markow T. A. (2011). Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. The Journal of nutrition. 141(6): 1127-1133.

    Moadeli T., Taylor P. & Ponton F. (2017). High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. Journal of Pest Science: 90.

    Morimoto J., Than A. T., Nguyen B., Lundbäck I., Dinh H. & Ponton F. (2022). Density-by-diet interactions during larval development shape adult life history trait expression and fitness in a polyphagous fly. The American Naturalist. 199(5): E170-E185.

    Nguyen Thi Oanh & Ha Danh Duc (2020). An initial investigation of pest species on Dai Loan mango planting in Cao Lanh city, Dong Thap province, Vietnam. Dong Thap University Jounal of Science. 9(5): 68-76 (in Vietnamese).

    Nguyen Van Tuat, Bui Thi Huy Hop, Do Hong Tuan, Dao Quang Nghi, Nguyen Van Hoa, Nguyen Hoang Long & Le Thi Lien (2015). Guava safe production. Vietnam Academy of Agriculture Sciences.

    Orankanok W., Chinvinijkul S., Thanaphum S., Sitilob P. & Enkerlin W. (2007). Area-wide integrated control of oriental fruit fly Bactrocera dorsalis and guava fruit fly Bactrocera correcta in Thailand. In: Area-wide control of insect pests. Springer: 517-526 pages.

    R Development Core Team (2017). R: A language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

    Roeder K. A. & Behmer S. T. (2014). Lifetime consequences of food protein-carbohydrate content for an insect herbivore. Functional Ecology. 28(5): 1135-1143.

    Rovenko B. M., Perkhulyn N. V., Gospodaryov D. V., Sanz A., Lushchak O. V. & Lushchak V. I. (2015). High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 180: 75-85.

    Stringer L. D., Kean J. M., Beggs J. R. & Suckling D. M. (2017). Management and eradication options for Queensland fruit fly. Population Ecology. 59(3): 259-273.

    Tran Van Hau (2015). Effectiveness of insecticides on fruitflies attacking Hoa Loc mango in Hoa Hung commune, Cai Be District, Tien Giang Province. Can Tho University Journal of Science: 113-119 (in Vietnamese).

    Truong Huynh Ngoc (2010). Insect pests on Chrysophyllum cainito L. at some Mekong Delta areas and biological characteristics of Euproctis subnotata (Walker) (Lepidoptera: Lymantriidae). Can Tho University Journal of Science. 209-220.

    Vargas R. I., Leblanc L., Putoa R. & Eitam A. (2007). Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia. Journal of Economic Entomology. 100(3): 670-679.

    Weems H. V., Heppner J. B., Nation J. & Fasulo T. R. (2012). Oriental fruit fly, Bactrocera dorsalis (Hendel)(Insecta: Diptera: Tephritidae). EDIS. 2012(3).

    Wickham H. (2009). ggplot2: elegant graphics for data analysis.

    Wills B. D., Chong C. D., Wilder S. M., Eubanks M. D., Holway D. A. & Suarez A. V. (2015). Effect of carbohydrate supplementation on investment into offspring number, size, and condition in a social insect. PLoS One. 10(7): e0132440.

    Winkler K., Wäckers F., Bukovinszkine-Kiss G. & van Lenteren J. (2006). Sugar resources are vital for Diadegma semiclausum fecundity under field conditions. Basic and Applied Ecology. 7(2): 133-140.

    Young Y., Buckiewicz N. & Long T. A. F. (2018). Nutritional geometry and fitness consequences in Drosophila suzukii, the spotted-wing Drosophila. Ecology and Evolution. 8(5): 2842-2851.

    Zeng Y., Reddy G. V., Li Z., Qin Y., Wang Y., Pan X., Jiang F., Gao F. & Zhao Z. H. (2019). Global distribution and invasion pattern of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Journal of Applied Entomology. 143(3): 165-176.

    Zhai Y., Sun Z., Zhang J., Kang K., Chen J. & Zhang W. (2015). Activation of the TOR signalling pathway by Glutamine regulates insect fecundity. Scientific Reports. 5: 10694-10694.