Date Received: Mar 14, 2023
Date Published: Jun 30, 2023
Views
Download
Section:
How to Cite:
Impacts of Dietary Supplementation of Peptidoglycan Extracted from Lactobacillus sp. on the Growth Performance and Resistance to Streptococcus Agalactiae of Nile Tilapia
Keywords
Prebiotics, cumulative mortality, disease resistance, peptidoglycan, Streptococcus agalactiae
Abstract
The current experiment aimed to determine the effects of peptidoglycan, known as a prebiotic compound, on the growth, feed efficiency, and disease resistance in Nile tilapia. Fish at an initial body weight of 22.6 ± 0.3g were distributed into a 100 L-glass tank system. Peptidoglycans extracted from Lactobacillus sp. were added to commercial feed at ratios of 0, 5, and 10 g kg-1 diet corresponding to the PG0, PG5, and PG10 treatments, respectively. Fish were then fed at 4% their body weight for four weeks. After a 4-week trial, fish were infected with Streptococcus agalactiae at 50% the lethal dose (1.1×106 CFU mL-1), and monitored for 14 days. After 2 and 4 weeks of the feeding trial (T2 and T4) and on the second day of the bacterial challenge, fish blood samples were collected for hematological analysis. The results indicated that the dietary supplementation of peptidoglycan induced a positive effect on fish growth performance and the highest value was observed in the PG5 treatment. The lowest value of cumulative mortality was also observed in the PG5-fed fish indicating that the dietary supplementation at 5 g kg-1 diet supported the highest resistance to S. agalactiae. In conclusion, the beneficial effects of dietary supplementation of peptidoglycan extracted from Lactobacillus sp. were recorded on the growth performance and disease resistance in Nile tilapia.
References
Abuseliana A., Daud H., Aziz S. A., Bejo S. K. & Alsaid M. (2010). Streptococcus agalactiae the etiological agent of mass mortality in farmed red tilapia (Oreochromis sp.). Journal of Animal and Veterinary Advances. 9: 2640-2646. DOI: 10.3923/javaa.2010.2640.2646.
Akhter N., Wu B., Memon A. M. & Mohsin M. (2015). Probiotics and prebiotics associated with aquaculture: A review. Fish and Shellfish Immunology. 45: 733-741. DOI: 10.1016/j.fsi.2015.05.038.
Alazab A., Sadat A. & Younis G. (2022). Prevalence, antimicrobial susceptibility, and genotyping of Streptococcus agalactiae in Tilapia fish (Oreochromis niloticus) in Egypt. Journal of Advanced Veterinary and Animal Research. 9: 95-103. DOI: 10.5455/javar.2022.i573.
Ali B., Anushka & Mishra A. (2022). Effects of dissolved oxygen concentration on freshwater fish: A review. International Journal of Fisheries and Aquatic Studies. 10: 113-127. DOI: 10.22271/fish.2022.v10.i4b.2693.
Baumgärtner S., James J. & Ellison A. (2022). The supplementation of a prebiotic improves the microbial community in the gut and the skin of Atlantic salmon (Salmo salar). Aquaculture Reports. 25: 1-10. DOI: 10.1016/j.aqrep.2022.101204.
Casadei E., Bird S., Wadsworth S., González Vecino J. L. & Secombes C. J. (2015). The longevity of the antimicrobial response in rainbow trout (Oncorhynchus mykiss) fed a peptidoglycan (PG) supplemented diet. Fish and Shellfish Immunology. 44: 316-320. DOI: 10.1016/j.fsi.2015.02.039.
Dalmo R.A. & Ingebrigtsen K. (1997). Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). 241-273.
Davani-Davari D., Negahdaripour M., Karimzadeh I., Seifan M., Mohkam M., Masoumi S. J., Berenjian A. & Ghasemi Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods. 8: 1-27. DOI: 10.3390/foods8030092.
Dawood M. A. O., Koshio S. & Esteban M. Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture. 10: 950-974. DOI: 10.1111/raq.12209.
Hemarajata P. & Versalovic J. (2013). Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology. 6: 39-51. DOI: 10.1177/1756283X12459294.
Huang J., Li J., Li Q., Li L., Zhu N., Xiong X. & Li G. (2020). Peptidoglycan derived from Lactobacillus rhamnosus MLGA up-regulates the expression of chicken β-defensin 9 without triggering an inflammatory response. Innate Immunity. 26: 733-745. DOI: 10.1177/1753425920949917.
Itami T., Asano M., Tokushige K., Kubono K., Nakagawa A., Takeno N., Nishimura H., Maeda M., Kondo M. & Takahashi Y. (1998). Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administration of peptidoglycan derived from Bifidobacterium thermophilum. Aquaculture. 164: 277-288. DOI:10.1016/S0044-8486(98)00193-8.
Lin Y. S., Saputra F., Chen Y. C. & Hu S. Y. (2019). Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish and Shellfish Immunology. 86: 410-419. DOI: 10.1016/j.fsi.2018.11.047.
McDonald C., Inohara N. & Nuñez G. (2005). Peptidoglycan signaling in innate immunity and inflammatory disease. Journal of Biological Chemistry. 280: 20177-20180. DOI: 10.1074/jbc.R500001200.
Munir M. B., Hashim R., Manaf M. S. A. & Nor S. A. M. (2016). Dietary Prebiotics and Probiotics Influence the Growth Performance, Feed Utilisation, and Body Indices of Snakehead (Channa striata) Fingerlings. Tropical Life Sciences Research. 27: 111-125. DOI: 10.21315/tlsr.
Nguyen H. V., Caruso D., Lebrun M., Nguyen N. T., Trinh T. T. & Meile J. (2016). Antibacterial activity of Litsea cubeba (Lauraceae, May Chang) and its effects on the biological response of common carp Cyprinus carpio challenged with Aeromonas hydrophila. Journal of Applied Microbiology. 121(2): 341-351. DOI: 10.1111/jam.13160.
Nguyen T. M., Mandiki S. N. M., Gense C., Tran T. N. T., Nguyen T. H. & Kestemont P. (2020). A combined in vivo and in vitro approach to evaluate the influence of linseed oil or sesame oil and their combination on innate immune competence and eicosanoid metabolism processes in common carp (Cyprinus carpio). Developmental and Comparative Immunology. 102. DOI: 10.1016/j.dci.2019.103488.
Nguyen T. M., Mandiki S. N. M., Salomon J. M. A. J., Baruti J. B., Nang Thu T. T., Nguyen T. H., Nhu T. Q. & Kestemont P. (2021). Pro- and anti-inflammatory responses of common carp Cyprinus carpio head kidney leukocytes to E.coli LPS as modified by different dietary plant oils. Developmental and Comparative Immunology. 114: 103828. DOI: 10.1016/j.dci.2020.103828.
Nguyen T. M., Nguyen T. H., Do N. A., Nguyen H. P. & Nang Thu T. T. (2022). Influence of dietary fat sources on growth, bacterial resistance, and antioxidant ability of liver in common carp, Cyprinus carpio. International journal of Aquatic biology. 10: 460-473. DOI:10.22034/ijab.v10i6.1696.
Nhu T. Q., Bich Hang B. T., Bach L. T., Buu Hue B. T., Quetin-Leclercq J., Scippo M. L., Phuong N. T. & Kestemont P. (2019). Plant extract-based diets differently modulate immune responses and resistance to bacterial infection in striped catfish (Pangasianodon hypophthalmus). Fish and Shellfish Immunology. 92: 913-924. DOI: 10.1016/j.fsi.2019.07.025.
Pan M. V., Traifalgar R. F. M., Serrano A. E. & Corre V. L. (2015). Immunomodulatory and Growth Promoting Effects of Peptidoglycan Supplementation in Black Tiger Shrimp Penaeus monodon Fabricius 1798. Asian Fisheries Science. 28. DOI: 10.33997/j.afs.2015.28.2.002.
Pretto-giordano L. G., Müller E. E., Freitas J. C. & De Gomes V. (2010). Evaluation on the Pathogenesis of Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus). Brazilian Archives of Biology and Technology. 53(1): 87-92. DOI: 10.1590/S1516-89132010000100011.
Purivirojkul W., Areechon N. & Srisapoome P. (2006). The effect of peptidoglycan on immune response in Black Tiger Shrimp (Penaeus monodon Fabricius). Kasetsart Journal - Natural Science. 40: 181-187.
Rohani M. F., Islam S. M., Hossain M. K., Ferdous Z., Siddik M. A., Nuruzzaman M., Padeniya U., Brown C. & Shahjahan M. (2022). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish and Shellfish Immunology. 120: 569-589. DOI: 10.1016/J.FSI.2021.12.037.
Sherif A. H., Abdellatif J. I., Elsiefy M. M., Gouda M. Y. & Mahmoud A. E. (2022). Occurrence of infectious Streptococcus agalactiae in the farmed Nile tilapia. Egyptian Journal of Aquatic Biology and Fisheries. 26: 403-432. DOI: 10.21608/ejabf.2022.243162.
Valdes A. M., Walter J., Segal E. & Spector T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ (Online). 361: 36-44. DOI: 10.1136/bmj.k2179.
Wang X., Zhang P. & Zhang X. (2021). Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules. 26: 1-15. DOI: 10.3390/molecules26196076.
Yin H. & Yang Z. (2022). Effect of OPG-supplemented diet on immune and stress responses and attenuation of LPS-induced damage in the liver of carp (Cyprinus carpio). Boletim do Instituto de Pesca. 48: 1-11. DOI: 10.20950/1678-2305/BIP.2022.48.E734
Zhang C. Y., Chen G. F., Wang C. C., Song X. L., Wang Y. G. & Xu Z. (2014). Effects of dietary supplementation of A3α-peptidoglycan on the growth, immune response and defence of sea cucumber Apostichopus japonicus. Aquaculture Nutrition. 20: 219-228. DOI: 10.1111/anu.12068.
Zhang Z. (2021). Research advances on tilapia Streptococcosis. Pathogens. 10: 1-10. DOI: 10.3390/pathogens10050558.
Zhou J., Song X. L., Huang J., Wang X. H. (2006). Effects of dietary supplementation of A3α-peptidoglycan on innate immune responses and defense activity of Japanese flounder (Paralichthys olivaceus). Aquaculture. 251: 172-181. DOI: 10.1016/j.aquaculture.2005.06.015.