Growth Characterization of Sugarcane (Saccharum spp.) under Salinity and Drought Stresses at the Seedling Stage

Date Received: Dec 19, 2023

Date Accepted: Aug 26, 2024

Date Published: Sep 30, 2024

Views

182

Download

286

How to Cite:

Cham, L., Linh, V., & Hang, V. (2024). Growth Characterization of Sugarcane (Saccharum spp.) under Salinity and Drought Stresses at the Seedling Stage. Vietnam Journal of Agricultural Sciences, 7(3), 2185–2194. https://doi.org/10.31817/vjas.2024.7.3.01

Growth Characterization of Sugarcane (Saccharum spp.) under Salinity and Drought Stresses at the Seedling Stage

Le Thi Tuyet Cham (*) 1 , Vu Khanh Linh 1   , Vu Thi Thuy Hang 1

  • Corresponding author: lttcham@vnua.edu.vn
  • 1 Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • Keywords

    Combined stress, drought, salinity, sugarcane growth

    Abstract


    This study aimed to assess the combined effects of salinity and drought stresses on the growth and physiology of sugarcane. The pot experiment was carried out in the Autumn cropping season of 2021 under the polyhouse conditions at the Vietnam National University of Agriculture. The experiment consisted of four treatments: non-stress treatment (control), drought stress, salt stress, and salt and drought stress (combined stress). Five weeks after transplanting, salt stress was applied first for four weeks and followed by drought stress for another two weeks. The results showed that under the impact of stresses, sugarcane growth was inhibited with decreases in plant height, number of leaves, Fv/Fm, SPAD, and the fresh and dry weights of roots and stems. The growth and physiology indicators were the lowest under the combined effects of salinity and drought stress.

    References

    Basnayake J., Jackson P. A., Inman-Bamber N. G. & Lakshmanan P. (2015). Sugarcane for water-limited environments. Variation in stomatal conductance and its genetic correlation with crop productivity. Journal of Experimental Botany. 66(13): 3945-3958.

    Brindha C., Vasantha S. & Arunkumar R. (2019). The response of sugarcane genotypes subjected to salinity stress at different growth phases. Journal of Plant Stress Physiology. 5: 28-33. DOI: 10.25081/jpsp. 2019.v5.5643.

    Chaves M. M, Flexas J. & Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany. 103(4): 551-560.

    Dinh H. T., Watanabe K., Takaragawa H. & Kawamitsu Y. (2018). Effects of drought stress at early growth stage on response of sugarcane to different nitrogen application. Sugar Tech. 20: 420-430. DOI: 10.1007/s12355-017-0566-y.

    Dinh T. H., Pham H. M. O., Nguyen V. L. & Vu. N. T. (2023). Recovery from drought and saline stress in growth and physiology of sugarcane. Vegetos. DOI: 10.1007/s42535-022-00553-6.

    Fisarakis I., Chartzoulakis K. & Stavrakas D. (2001). Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management. 51: 13-27.

    Garcia F. H. S., Mendonça A. M. C., Rodrigues M., Matias F. I., Silva F. M. P., Santos H. R. B., Taffner J. & Barbosa J. P. R. A. D. (2020). Water deficit tolerance in sugarcane is dependent on the accumulation of sugar in the leaf. Annals of Applied Biology. 176: 65-74.

    Hemaprabha G., Swapna S., Lavanya D. L., Sajitha B. & Venkataramana S. (2013). Evaluation of Drought Tolerance Potential of Elite Genotypes and Progenies of Sugarcane (Saccharum sp. hybrids). Sugar Tech. 15: 9-16. DOI: 10.1007/s12355-012-0182-9

    Jaiphong T., Tominaga J., Watanabe K., Nakabaru M., Takaragawa H., Suwa R., Ueno M.& Kawamitsu Y. (2016). Effects of duration and combination of drought and flood conditions on leaf photosynthesis, growth and sugar content in sugarcane. Plant Production Science. 19(3): 427-437.

    Jangpromma N., Thammasirirak S., Jaisil P. & Songsri P. (2012). Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane (Saccharum offcinarum L.). Australian Journal of Crop Science. 6: 1298-1304.

    Julkowska M. M., Hoefsloot H. C. J., Mol S., Feron R., de Boer G. J., Haring M. A. & Testerink, C. (2014). Capturing Arabidopsis root architecture dynamics with root-fit reveals diversity in responses to salinity. Plant Physiology. 166: 1387-1402.

    Karinki R. K. & Sahoo S. N. (2019). Use of meteorological data for identification of drought. ISH Journal of Hydraulic Engineering. 27(4): 427-433.

    Kaushal M. (2019). Portraying rhizobacterial mechanisms in drought tolerance: A way forward toward sustainable agriculture, PGPR Amelioration in Sustainable Agriculture, Woodhead Publishing: 195-216.

    Kumar R., Sagar V., Verma V. C., Kumari M., Gujjar R. S., Goswami S. K., Kumar J. S., Pandey H., Dubey A. K., Srivastava S., Singh S. P., Mall A. K., Pathak A. D., Singh H., Jha P. K. & Prasad P. V. V. (2023). Drought and salinity stresses induced physio-biochemical changes in sugarcane: an overview of tolerance mechanism and mitigating approaches. Frontiers in Plant Science. 14: 1225234. DOI: 10.3389/fpls.2023.1225234

    Martin Stpaul N., Delzon S. & Cochard H., (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters. 20: 1437e1447.

    Medeiros D. B., da Silva E. C., Mansur Custodio Nogueira R. J., Teixeira M. M. & Buckeridge M. S. (2013). Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical Experimental Plant Physiology. 25: 213-222.

    Meena M. R., Kumar R., Chinnaswamy A., Karuppaiyan R., Kulshreshtha N. & Ram B. (2020). Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions. 3 Biotech. 10: 440. DOI: 10.1007/s13205-020-02416-w.

    Misra V., Solomon S., Mall A. K., Prajapati C. P., Hashem A., Abd A. E. F. & Ansari M. I. (2020). Morphological assessment of water stressed sugarcane: a comparison of waterlogged and drought affected crop. Saudi Journal of Biological Sciences. 27: 1228-1236. DOI: 10.1016/j.sjbs.2020.02.007.

    Munns R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment. 25(2): 239-250.

    Pic E., La De, Serve B. T., Tardieu F. & Turc O. (2002). Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in Pea. Plant Physiology. 128: 236-246.

    Sharma A., Singh R. K., Singh P., Vaishnav A., Guo D. J., Verma K. K., Li D. P., Song X. P., Malviya M. K., Khan N., Lakshmanan P. & Li Y. R. (2021). Insights into the bacterial and nitric oxide-induced salt tolerance in sugarcane and their growth-promoting abilities. Microorganisms. 9 (11): 2203. DOI: 10.3390/microorganisms9112203.

    Shrivastava A. K. & Srivastava M. K. (2006). Abiotic stresses affecting sugarcane. International Book Distributing Company, Lucknow, India.

    Silva A. A., Rubio Z. C. C, Linhares P. C. A, Silva K. R., Pimentel G. V. & Marchiori P. E. R. (2022). Genotypic variation of sugarcane for salinity tolerance: Morphological and physiological responses. Agricultural Science. 46: e000122. DOI: 10.1590/1413-7054202246000122.

    Silva P. P. D., Soares L., Costa J. G. D., Viana L. D. S., Andrade F. J. C. D., Goncalves E. R, Santos J. M. D., Barbosa G. V. D. S, Nascimento V. X., Todaro A. R., Riffel A., Grossi-de-Sa M. F., Barbosa M. H. P., Sant’Ana A. E. G & Neto C. E. R. (2012). Path analysis for selection of drought tolerant sugarcane genotypes through physiological components. Industrial Crops and Products. 37: 11-19.

    Smith D. M., Inman-Bamber N. G. & Thorburn P. J. (2005). Growth and function of the sugarcane root system. Field Crops Research. 92: 169-183.

    Thuy Loan (2023). Summary of sugarcane production for the 2022-2023 crop. Retrieved from https://www.vien miaduong.vn/vi/chitiettin.php?idTin=303 on 18 June 2024.

    Vasantha S., Gomathi R. & Brindha C. (2017). Growth and nutrient composition of sugarcane genotypes subjected to salinity and drought stresses. Communications in Soil Science and Plant Analysis. 48(9): 989-998. DOI: 10.1080/00103624.2017.1322604.

    Wang W., Vinocur B. & Altman A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 218: 1-14. DOI: 10.1007/s00425-003-1105-5.

    Zahedi S. M., Hosseini M. S., Naghmeh D., Abadı ́a J., Germ M., Gholami R. & Abdelrahman M. (2022). Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers. Agricultural. Water Management. 261: 107357.

    Zelm E. V., Zhang Y. & Testerink C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology. 71: 403-433. DOI: 10.1146/annurev-arplant-050718-100005.

    Zhou H., Shi H., Yang Y., Feng X., Chen X., Xiao F., Lin H. & Guo Y. (2024). Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics. 51(1): 16-34.