Received: Nov 25, 2020 / Published: Aug 10, 2021
This study was conducted to examine the effects of baby corn density on the crop and weed performance under two different maize-soybean intercropping systems. Treatments included four baby corn densities (D1= 138,888 plants ha-1, D2 = 111,111 plants ha-1, D3 = 92,592 plants ha-1, and D4 = 79,365 plants ha-1), and three intercropping methods (P0 = a sole cropping of baby corn, P1 = 1 row of soybean + 1 row of baby corn (density of soybean, 10 plant m-2), and P2 = 2 rows of soybean + 1 row of baby corn (density of soybean, 20 plants m-2)). Physiological characteristics and yield were measured for the baby corn and soybean. The weed species, weed frequency, and the growth of the weeds were recorded at the final harvesting time of the baby corn. The results showed that the yield of soybean and the growth of the weeds were statistically different under the different maize-soybean intercropping systems. Increasing the baby corn density increased the leaf area index, dry matter accumulation, and cob yield, but did not have a clear effect on the soybean yield under both intercropping methods. In addition, the P2 intercropping method produced significantly higher soybean yield and gave better results of weed growth reduction in comparison with the P1 intercropping method. In the P2 intercropping method, baby corn should be grown at a density of 111,111 plants ha-1 to optimize the population productivity and achieve reasonable weed control for the sustainability of agriculture.