Establishment of Reciprocal Micrografting of Tomato (Solanum lycopersicum L.) and Eggplant (Solanum melongena L.)

Son Truong Dinh 1 and Tham Thi Tran 2

1Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
2Vietnam Likado Joint Stock Company, Hanoi 127000, Vietnam
Received: Oct 19, 2018 /
Revised: Jul 13, 2021 /
Published: Oct 22, 2018

Main Article Content

Full-Text | pdf

Abstract

Micrografting can be used as a key tool to investigate gene-function, long-distance signal transduction, or metabolite movement in different developmental and physiological stages. In plant production, plant grafting can be applied to improve productivity and/or increase the tolerance of plants to stresses. Here, we describe a simple and high efficiency protocol for reciprocal micrografting of tomato (Solanum lycopersicum L.) and eggplant (Solanum melongena L.). Tomato and eggplant seeds can be disinfected with 0.5% Presept for 20 min before germinating on MS media. Seedlings of 5-day-old tomatoes and 15-day-old eggplants were suitable for preparation of scions and rootstocks. Scions were cut into 0.5-1 cm lengths for micrografting. Sucrose levels greatly influenced the graft success rate of all graft combinations including of self- and reciprocal micrografting between tomato and eggplant. While self-grafted tomatoes or eggplants required 20 g L-1 sucrose to get the highest grafting success rate (72% for tomato and 100% for eggplant), reciprocal micrografting of tomato/eggplant and eggplant/tomato reached the highest success rate (83%) on MS medium supplemented with 30 g L-1 sucrose. Grafted plants should be cultured under the illumination conditions of a 16 h light/8 h dark cycle for optimal growth and quality.

Keywords: micrografting, grafting, tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.)

Article Details

How to Cite
Dinh, S., & Tran, T. (2018). Establishment of Reciprocal Micrografting of Tomato (Solanum lycopersicum L.) and Eggplant (Solanum melongena L.). Vietnam Journal of Agricultural Sciences, 1(2), 156-165. https://doi.org/10.31817/vjas.2018.1.2.05

References

    Atkinson C. J., Else M. A., Taylor L. and Dover C. J. (2003). Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.). Journal of Experimental Botany. Vol 54. pp. 1221-1229.
    Badalamenti O., Carra A., Oddo E., Carimi F. and Sajeva M. (2016). Is in vitro micrografting a possible valid alternative to traditional micropropagation in Cactaceae? Pelecyphora aselliformis as a case study. SpringerPlus. Vol 5. pp. 201.
    Bozorov T. A., Dinh S. T. and Baldwin I. T. (2017). JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. Journal of Integrative Plant Biology. Vol 59. pp. 552-571.
    Fragoso V., Goddard H., Baldwin I. T. and Kim S. G. (2011). A simple and efficient micrografting method for stably transformed Nicotiana attenuata plants to examine shoot-root signaling. Plant Methods. Vol 7. pp. 34.
    Gaion L. A., Braz L. T. and Carvalho R. F. (2018). Grafting in vegetable crops: a great technique for agriculture. International Journal of Vegetable Science. Vol 24. pp. 85-102.
    Goldschmidt E. E. (2014) Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science. Vol 5. pp. 1-9.
    Grigoriadis I., Nianiou I. and Tsaftaris A. S. (2005). Shoot regeneration and micrografting of micropropagated hybrid tomatoes. Journal of Horticultural Science and Biotechnology. Vol 80 (2). pp. 183-186.
    Gulati A., Schryer P. and McHughen A. (2001). Regeneration and micrografting of lentil shoots. In vitro Cellular and Developmental Biology - Plant. Vol 37. pp. 798-802.
    Ha N. T. (2009). Effects of rootstock on yield and disease resistance in tomato grows in early spring 2007 in Thai Nguyen. Journal of Science and Technology. Vol 51. pp. 1-4 (in Vietnamese).
    Hamaraie M. A. A., Osman M. E. and Mohamed A. A. (2005). Propagation of grapefruit by shoot tip micrografting. Proceedings of the Meetings of the National Crop Husbandry Committee - Sudan 38th. pp. 215-219.
    Mihaljević I., Dugalić K., Tomaš V., Viljevac M., Pranjić A., Čmelik Z., Puškar B. and Jurković Z. (2013). In vitro sterilization procedures for micropropagation of ‘OblaČinska’ sour cherry. Journal of Agricultural Sciences. Vol 58. pp. 117-126.
    Johkan M., Mitukuri K., Yamasaki S., Mori G. and Oda M. (2009). Causes of defoliation and low survival rate of grafted sweet pepper plants. Scientia Horticulturae. Vol 119. pp. 103-107.
    Kendon J. P., Rajaovelona L., Sandford H., Fang R., Bell J. and Sarasan V. (2017). Collecting near mature and immature orchid seeds for ex situ conservation: ‘in vitro collecting’ as a case study. Botanical Studies. Vol 58. pp. 34. doi: 10.1186/s40529-017-0187-5.
    Khalafalla M. M. and Daffalla H. M. (2008). In vitro micropropagation and micrografting of gum arabic tree (Acacia senegal (L.) Wild). International Journal of Sustainable Crop Production. Vol 3. pp. 19-27.
    Khan S. V. P. S., Prakash E. and Rao K. R. (2002). Callus induction and plantlet regeneration in Bixa oreliana L., an annatto-yielding tree. In vitro Cellular & Development Biology - Plant. Vol 38. pp. 186-190.
    Li D., Baldwin I. T. and Gaquerel E. (2016). Beyond the Canon: within-plant and population-level heterogeneity in jasmonate signaling engaged by plant-insect interactions. Plants (Basel). Vol 5 (1). pp. 14. doi: 10.3390/plants5010014.
    Majhail H. S. and Singh K. K. (1962). Inarching in mango. II. The optimum period of grafting and age of stock seedling. Punjab Horticultural Journal. Vol 2. pp. 109-113.
    Melnyk C. W. (2017). Plant grafting: insights into tissue regeneration. Regeneration. Vol 4. pp. 3-14.
    Melnyk C. W. and Meyerowitz E. M. (2015). Plant grafting. Current Biology. Vol 25. pp. R183-R188.
    Miles C., Wimer J. and Inglis D. (2015). Grafting eggplant and tomato for verticillium wilt resistance. Acta Horticulturae. Vol 1086. pp. 113-118.
    Mneney E. E. and Mantell S. H. (2001). In vitro micrografting of cashew. Plant Cell, Tissue and Organ Culture. Vol 66. pp. 49-58.
    Murashige T. and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. Vol 15. pp. 473-497.
    Naz A. A., Jaskani J. M., Abbas H. and Qasim M. (2007). In vitro studies on micrografting technique in two cultivars of citrus to produce virus free plants. Pakistan Journal of Botany. Vol 39. pp. 1773-1778.
    Regnault T., Daviere J. M. and Achard P. (2016). Long-distance transport of endogenous gibberellins in Arabidopsis. Plant Signaling and Behavior. Vol 11: e1110661. doi: 10.1080/15592324.2015.1110661.
    Rehman H. and Gill M. I. S. (2015). Micrografting of fruit crops - A review. Journal of Horticulture. Vol 2. pp. 7.
    Rzepka-Plevneö D., Kulpa D., Grabiec M., Kowalczys K. and Kurek J. (2006). The effect of growth regulators and culture conditions on the callus induction in tomato Lycopersicon sp. Acta Scientiarum Polonorum, Hortorum Cultus. Vol 5. pp. 23-24.
    Sanjaya, Muthan B., Rathore T. S. and Rai V. R. (2006). Factors influencing in vivo and in vitro micrografting of sandalwood (Santalum album L.): an endangered tree species. Journal of Forest Research. Vol 11. pp. 147-151.
    Tanuja P., Thippesha D. and Kavyashree N. (2017). Effect of age and curing of scion on cost: benefit ratio of softwood grafting of sapota (Achras zapota L.). International Journal of Current Microbiology and Applied Sciences. Vol 6. pp. 2678-2682.
    Tsutsui H. and Notaguchi M. (2017). The use of grafting to study systemic signaling in plants. Plant Cell Physiology. Vol 58. pp. 1291-1301.
    Turnbull C. G., Booker J. P. and Leyser H. M. (2002). Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant Journal. Vol 32. pp. 255-262.
    Vu N. T., Kim Y. S., Kang H. M. and Kim I. S. (2014). Effect of red leds during healing and acclimatization process on the survival rate and quality of grafted tomato seedlings. Protected Horticulture and Plant Factory. Vol 23. pp. 43-49.
    Zhang M., Wang Z., Yuan L., Yin C., Cheng J., Wang L., Huang J. and Zhang H. (2012). Osmopriming improves tomato seed vigor under aging and salinity stress. African Journal of Biotechnology. Vol 11. pp. 6305-6311.