Phenolic Extracts from Myrtaceae Leaves Improve the Quality and Shelf-life of Pacific Whiteleg Shrimp

Lai Thi Ngoc Ha 1 , Tran Thi Hoai 1 , Nguyen Van Lam 1 and Hoang Lan Phuong 1

1Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
Received: Aug 4, 2022 /
Revised: Dec 30, 2022 /
Published: Dec 30, 2022

Main Article Content

Full-Text | pdf

Abstract

This study aimed to quantify the phenolic contents and the antioxidant capacities of leaf extract powders from three Myrtaceae plants, namely Cleistocalyx operculatus (Vietnamese name: Vối), Psidium guajava (Ổi), and Rhodomyrtus tomentosa (Sim), investigate their inhibitive activities on the growth of bacteria isolated from spoiled shrimps, and evaluate their values as preservative agents in the cold storage of Pacific whiteleg shrimps (Penaeus vannamei). The extract leaf powders from R. tomentosa, C. operculatus, and P. guajava had high phenolic contents of 281.25, 282.36, and 349.51 mg gallic acid equivalent/g leaf extract, respectively. Among the three plants, the extract powders of R. tomentosa and P. guajava leaves had the highest antioxidant capacities (about 4 mmol Trolox equivalent (TE)/g) followed by the one of C. operculatus (2.85 mmol TE/g). These three extract powders showed significant antibacterial activities against the seven bacteria isolated from cold-stored spoiled whiteleg shrimps with the inhibition zones ranging from 0.33 to 19.67mm depending on the extract concentration. Among the three leaf extracts, the one from P. guajava leaves showed the highest inhibitive activity. Aeromonas sp2 was the most sensible to Myrtaceae leaf extracts while Aeromonas sp4 was the least affected strain. All the extracts showed high inhibitive activities against melanosis, volatile nitrogen-containing compounds formation, lipid oxidation, and microbial growth in stored shrimps, thereby prolonging the shelf-life of the shrimps. The results suggested the potential application of these three Myrtaceae plants as sources of antioxidant and antimicrobial agents in the cold storage of shrimps.

Keywords: Phenolic compounds, antioxidant capacity, antimicrobial activity, cold storage

Article Details

How to Cite
Ha, L., Hoai, T., Lam, N., & Phuong, H. (2022). Phenolic Extracts from Myrtaceae Leaves Improve the Quality and Shelf-life of Pacific Whiteleg Shrimp. Vietnam Journal of Agricultural Sciences, 5(4), 1645-1659. https://doi.org/10.31817/vjas.2022.5.4.04

References

    Alara O. R., Abdurahman N. H. & Ukaegbu C. I. (2021). Extraction of phenolic compounds: A review. Current research in food science. 21: 200-214.
    Aryal S., Baniya M. K., Danekhu K., Kunwar P., Gurung R. & Koirala N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. 8: 90-112.
    Benjakul S., Visessanguan W. & Tanaka M. (2005). Properties of phenoloxidase isolated from the cephalothorax of kuruma prawn (Penaeus japonicus). Journal of Food Biochemistry. 29: 470-485.
    Biswas B., Rogers K., McLaughlin F., Daniels D. & Yadav A. (2013). Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two Gram-negative and Gram-positive bacteria. International Journal of Microbiology. Article ID 746165. DOI: 10.1155/2013/746165.
    Collins-Williams C. (1983). Intolerance to additives. Annals of Allergy. 5(2): 315-316.
    da Silva H. S., Miotto M., de Medeiros K. & Vieira C. R. W. (2015). Control of psychrophilic microbiota in shrimp (Litopenaeus vannamei) by Lactobacillus reuteri. African Journal of Microbiology Research. 9(16): 1118-1121.
    Dang, L. T., Nguyen, H. T., Hoang, H. H., Lai, H. N. & Nguyen, H. T. (2019). Efficacy of rose myrtle Rhodomyrtus tomentosa seed extract against acute Hepatopancreatic necrosis disease in Pacific whiteleg shrimp Penaeus vannamei. Journal of Aquatic Animal Health. 31: 311-319.
    Díaz-de-Cerio E., Verardo V., Gómez-Caravaca A., Fernández-Gutiérrez A. & Segura-Carretero A. (2015). Determination of polar compounds in guava leaves infusions and ultrasound aqueous extract by HPLC-ESI-MS. Journal of Chemistry. Article ID 250919. DOI: 10.1155/2015/250919.
    Díaz-de-Cerio E., Gómez-Caravaca A. M., Verardo V., Fernández-Gutiérrez A. & Segura-Carretero A. (2016). Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. Journal of Functional Foods. 22: 376-388.
    Duan X., Jiang Y., Su X., Zhang Z. & Shi J. (2007). Antioxidant properties of anthocyanins extracted from litchi (Litchi chinensis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chemistry. 101(4): 1365-1371.
    Firdous A., Ring E. & Elumalai P. (2020). Effects of green tea- and amla extracts on quality and melanosis of Indian white prawn (Fenneropenaeus indicus, Milne Edwards, 1837) during chilled storage. Aquaculture and Fisheries. DOI: 10.1016/j.aaf.2020.09.003.
    Flores G., Wu S.-B., Negrin A. & Kennelly E. J. (2015). Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food chemistry. 17(1): 327-335.
    Gómez-Guillén M. C., Óscar Martíınez-Alvarez Ó., Llamas A. & Montero P. (2005). Melanosis inhibition and SO2 residual levels in shrimps (Parapenaeus longirostris) after different sulfite-based treatments. Journal of the Science of Food and Agriculture. 85:1143-1148.
    Ha L. T. N., Hoai T. T., Yen H. T., Hang T. T. T. & Ha H. H. (2016). Phenolic compounds of sim (Rhodomyrtus tomentosa) leaves: extraction and first tests in shrimp preservation. International Conference on Sustainable Agriculture and Environment 2016 (SAE 2016). December 13-14, 2016. Ho Chi Minh city.
    Hamid, H. A., Mutazah, S. S. & Yusoff, M. M. (2017). Rhodomyrtus tomentosa: A phytochemical and pharmacological review. Asian Journal of Pharmaceutical and Clinical Research. 10(1):1-7.
    Kalleda R. K., Han I. Y., Toler J. E., Chen F., Kim H. J. & Dawson P. L. (2013). Shelf life extension of shrimp (white) using modified atmosphere packaging. Polish Journal of Food and Nutrition Sciences. 63(2): 87-94.
    Karou D., Dicko M. H., Simpore J. & Traore A. S. (2005). Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. African Journal of Biotechnology. 4(8): 823-828.
    Leitão M. F. de F. & Rios D. de P. A. (2000). Microbiological and chemical changes in freshwater prawn (Maceobrachium rosembergii) stored under refrigeration. Brazilian Journal of Microbiology. 31: 178-183.
    Limsuwana S., Trip E. N., Kouwen T. R., Piersma S., Hiranrat A., Mahabusarakam W., Voravuthikunchai S. P., Dijl J. M. & Kayser O. (2009). Rhodomyrtone: A new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine. 16(6-7): 645-651.
    Manheem K., Benjakul S., Kijroongrojana K. & Visessanguan W. (2013). Impacts of freeze-thawing on melanosis and quality change of pre-cooked Pacific white shrimp. International Food Research Journal. 20(3): 1277-1283.
    Miraglia D., Castrica M., Menchetti L., Esposto S., Branciari R., Ranucci D., Urbani S., Sordini B. & Veneziani G. & Servili M. (2020). Effect of an olive vegetation water phenolic ưxtract on the physico-chemical, microbiological and sensory traits of shrimp (Parapenaeus longirostris) during the shelf-life. Foods. 9: 1647-1662.
    Nguyen P. T. M., Schultze N., Boger C., Alresley Z., Bolhuis A. & Lindequist U. (2017). Anticaries and antimicrobial activities of methanolic extract from leaves of Cleistocalyx operculatus L. Asian pacific Journal of Tropical Biomedicine. 7(1): 43-48.
    Nirmal N. P. & Benjakul S. (2009). Melanosis and quality changes of Pacific white shrimp (Litopenaeus vannamei) treated with catechin during iced storage. Journal of Agricultural and Food Chemistry. 57(9): 3578-3586.
    Nirmal N. P. & Benjakul S. (2010). Effect of catechin and ferulic acid on melanosis and quality of Pacific white shrimp subjected to prior freeze–thawing during refrigerated storage. Food Control. 21(9): 1263-1271.
    Nirmal N. P. & Benjakul S. (2011). Inhibition of melanosis formation in Pacific white shrimp by the extract of lead (Leucaena leucocephala) seed. Food Chemistry. 128(2): 427-432.
    Odedina G. F., Vongkamjan K. & Voravuthikunchai S. P. (2016). Use of Rhodomyrtus tomentosa ethanolic leaf extract for the bio-control of Listeria monocytogenes post-cooking contamination in cooked chicken meat. Journal of Food Science and Technology. 53(12): 4234-4243.
    Pham Hoang Ho (2003). In An illustrated flora of Vietnam (Vol. 2, 2nd ed.). Hanoi, Vietnam: Tre Publication House (in Vietnamese): 43 and 59.
    Qian Y.-F., Xie J., Yang S.-P. & Wu W.-H. (2013). Study of the quality changes and myofibrillar proteins of white shrimp (Litopenaeus vannamei) under modified atmosphere packaging with varying CO2 levels. European Food Research and Technology. 236: 629-635.
    Singleton V. L. & Rossi J. A. J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16: 144-158.
    Saising J., Hiranrat A., Mahabusarakam W., Ongsakul M. & Voravuthikunchai S. P. (2008). Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. as a natural
    antibiotic staphylocaccal cutaneous infection. Journal of Health Science. 54(5):589-595.
    Shamshad S. I., Kher-Un-Nisa M., Riaz M., Zuberi R. & Qadri R. B. (1990). Shelf life of shrimp (Penaeus merguiensis) stored at different temperatures. Journal of Food Science. 55(5): 169-175.
    Sing G., Passsari A. K., Leo V. V., Mishra V. K., Subbarayan S., Singh B. P., Kumar B., Kumar S., Gupta V. K., Lalhlenmawia H. & Nachimuthu S. K. (2016). Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from India. Frontiers in Plant Science. 7: 407-419
    Takeungwongtrakul S. & Benjakul S. (2016). Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: kinetics study and stability as affected by storage conditions. International Aquatic Research. 8: 15-27.
    Tong J. & McIntosh T. J. (2004). Structure of supported bilayers composed of lipopolysaccharides and bacterial phospholipids: Raft formation and implications for bacterial resistance. Biophysical Journal. 86(6): 3759-3771.
    Tsironi T., Dermesonlouoglou E., Giannakourou M. & Taoukis P. (2009). Shelf-life modelling of frozen shrimp at variable temperature conditions. LWT - Food Science and Technology. 42: 664-671.
    Vietnamese Directorate of Fisheries (2019). Retrieved from https://tongcucthuysan.gov.vn/en-us/News/-Tin-v%E1%BA%AFn/doc-tin/014196?2020-01-15=Banner+002 on January 25, 2022 (in Vietnamese).
    Vietnamese Directorate of Fisheries, 2020. Retrieved from https://tongcucthuysan.gov.vn/vi-vn/Tin-t%E1%BB%A9c/-Tin-v%E1%BA%AFn/doc-tin/015515/2020-12-30/san-xuat-thuy-san-nam-2020-tiep-tuc-duy-tri-duoc-da-tang-truong on January 25, 2022 (in Vietnamese).
    Wang C., Wu P., Tian S., Xue J., Xu L., Li H. & Wei X. (2016). Bioactive pentacyclic triterpenoids from the leaves of Cleistocalyx operculatus. Journal of Natural Products. 79: 2912-2923.
    Yamagata M. & Low L. K. (1995). Bananna shrimp Penaeus merguiensis, quality changes during iced and frozen storage. Journal of Food Science. 60: 721-726.
    Zeng Q. Z., Thorarinsdottir K. A. & Olafsdottir G. (2005). Quality changes of shrimp (Pandalus borealis) stored under different cooling conditions. Journal of Food Science. 70(7): 459-466