Inhibitory Effects of Ludwigia Octovalvis (Jacq.) Raven Extracts on the Growth of Microcystis Aeruginosa

Date Received: Jun 12, 2023

Date Published: Dec 30, 2023

Views

549

Download

200

Section:

ENGINEERING AND TECHNOLOGY

How to Cite:

Hoa, N., Thuy, T., Huyen, V., Vinh, P., Duc, P., & Ai, D. (2023). Inhibitory Effects of Ludwigia Octovalvis (Jacq.) Raven Extracts on the Growth of Microcystis Aeruginosa. Vietnam Journal of Agricultural Sciences, 6(4), 1969–1977. https://doi.org/10.31817/vjas.2023.6.4.07

Inhibitory Effects of Ludwigia Octovalvis (Jacq.) Raven Extracts on the Growth of Microcystis Aeruginosa

Nguyen Xuan Hoa 1 , Tran Thi Thuy 1 , Vu Thi Huyen 1 , Phung Thi Vinh 1 , Pham Trung Duc 1   , Doan Thi Thuy Ai (*) 1

  • Corresponding author: dttai@vnua.edu.vn
  • 1 Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
  • Keywords

    Algae, cyanobacteria, Microcystis aeruginosa, Ludwigia octovalvis, Onagraceae

    Abstract


    This study examined the phytochemical composition and algicidal effectiveness of Ludwigia octovalvis. The powder samples were extracted by ultrasound-assisted extraction with polar solvents (water-diluted ethanol, acetone, methanol, and water). The preliminary phytochemical analyses used standard procedures following Sofowora and Harborne. Total phenolic contents in extracts were determined by the Folin-Ciocalteu method using a calibration curve of gallic acid. The results showed that this plant contains polyphenols, flavonoids, anthraquinones, glycosides, and saponins. The best conditions for the extraction of polyphenol compounds with a total polyphenol content of 149.22 ± 0.96 mg GAE g-1 were acetone/water 70:30 (v/v) and a solvent-to-material ratio of 20 mL g-1. The inhibitory effect of the extracts against M. aeruginosa growth increased from 40.71 to 81.56% on day 7 when exposed to concentrations of the extract from 50-200 μg mL-1 according to the cell counting method. The L. octovalvis extract was identified as an effective inhibitor of the growth of M. aeruginosa.

    References

    Aung L. W. & Chaw D. K. E. (2019). Study on Morphology, Anatomy, Preliminary Phytochemical Test, Nutritional Values and Antimicrobial Activities of leaves of Ludwigia octovalvis (Jacq.) Raven. Dagon University Commemoration of 25th Anniversary Silver Jubilee Research Journal. 9(2): 321-327.

    Baky M. H., Elgindi M. R., Shawky E. M. & Ibrahim H. A. (2022). Phytochemical investigation of Ludwigia adscendens subsp. diffusa aerial parts in context of its biological activity. BMC Chemistry. 16(1): 112.

    Barrett P., Littlejohn J. & Curnow J. (1999). Long-term algal control in a reservoir using barley straw. In: Biology, Ecology and Management of Aquatic Plants. Springer: 309-313.

    Chen J., Hoch P. C., Raven P. H., Boufford D. A. & Wagner W. L. (2007). Section 29 Onagraceae. In: Wu Z. Y., Raven P. H. & Hong D. Y. (Eds). Flora of China vol. 13. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis: 400-404.

    Ding W.-X., Shen H.-M., Shen Y., Zhu H.-G. & Ong C.-N. (1998). Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes. Environmental Health Perspectives. 106(7): 409-413.

    Fan J., Hobson P., Ho L., Daly R. & Brookes J. (2014). The effects of various control and water treatment processes on the membrane integrity and toxin fate of cyanobacteria. Journal of Hazardous Materials. 264: 313-322.

    Gross E. M., Meyer H. & Schilling G. (1996). Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry. 41(1): 133-138.

    Harborne A. (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer Science and Business Media.

    Huang H., Xiao X., Ghadouani A., Wu J., Nie Z., Peng C., Xu X. & Shi J. (2015). Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa. Toxins. 7(1): 66-80.

    Jančula D. & Maršálek B. (2011). Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere. 85(9): 1415-1422.

    Karan V., Vitorović S., Tutundžić V. & Poleksić V. (1998). Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicology and Environmental Safety. 40(1-2): 49-55.

    Meng P., Pei H., Hu W., Liu Z., Li X. & Xu H. (2015). Allelopathic effects of Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere. 141: 219-226.

    Moghaddam Z. (2012). Effects of solvent type on phenolics and flavonoids content and antioxidant activities in Onosma dichroanthum Boiss. Journal of Medicinal Plants Research. 6(28): 4481-4448.

    Mohammedi Z. & Atik F. (2011). Impact of solvent extraction type on total polyphenols content and biological activity from Tamarix aphylla (L.) Karst. International Journal of Pharma and Bio Sciences. 2(1): 609-615.

    Nakagawa M., Takamura Y. & Yagi O. (1987). Isolation and characterization of the slime from a cyanobacterium, Microcystis aeruginosa K-3A. Agricultural and Biological Chemistry. 51(2): 329-337.

    Nakai S., Inoue Y. & Hosomi M. (2001). Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Research. 35(7): 1855-1859.

    Nayak B., Dahmoune F., Moussi K., Remini H., Dairi S., Aoun O. & Khodir M. (2015). Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry. 187: 507-516.

    Nga P. T., Dien P. H., Quyen N. V., Thuong T. H., Quynh L. T. P., Dat N. T., Thuy D. T. & Kim D. D. (2017). Inhibitory effect of different Eupatorium fortunei Turcz extracts on the growth of Microcystis aeruginosa. Vietnam Journal of Science and Technology. 55(4C): 103.

    Nishiwaki-Matsushima R., Ohta T., Nishiwaki S., Suganuma M., Kohyama K., Ishikawa T., Carmichael W. W. & Fujiki H. (1992). Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. Journal of Cancer Research and Clinical Oncology. 118(6): 420-424.

    Oh H.-M., Lee S. J., Jang M.-H. & Yoon B.-D. (2000). Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Applied and environmental Microbiology. 66(1): 176-179.

    Oreopoulou A., Tsimogiannis D. & Oreopoulou V. (2019). Extraction of polyphenols from aromatic and medicinal plants: an overview of the methods and the effect of extraction parameters. In: Watson R. R. (2019). Polyphenols in Plants, Isolation, Purification and Extract Preparation (2nd ed.). Academic Press: 243-260.

    Park M. H., Han M. S., Ahn C. Y., Kim H. S., Yoon B. D. & Oh H. M. (2006). Growth inhibition of bloom‐forming cyanobacterium Microcystis aeruginosa by rice straw extract. Letters in Applied Microbiology. 43(3): 307-312.

    Pillinger J., Cooper J. & Ridge I. (1994). Role of phenolic compounds in the antialgal activity of barley straw. Journal of Chemical Ecology. 20(7): 1557-1569.

    Rao P., Bhattacharya R., Pant S. & Bhaskar A. (1995). Toxicity evaluation of in vitro cultures of freshwater cyanobacterium Microcystis aeruginosa: I. Hepatotoxic and histopathological effects in rats. Biomedical and Environmental Sciences: BES. 8(3): 254-264.

    Sankar R., Prasath B. B., Nandakumar R., Santhanam P., Shivashangari K. S. & Ravikumar V. (2014). Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles. Environmental Science and Pollution Research. 21(24): 14232-14240.

    Shao J., Li R., Lepo J. E. & Gu J.-D. (2013). Potential for control of harmful cyanobacterial blooms using biologically derived substances: problems and prospects. Journal of Environmental Management. 125: 149-155.

    Shawky E. M., Elgindi M. & Hassan M. M. (2023). Phytochemical and biological diversity of genus Ludwigia: A comprehensive review. Egyptian Russian University Research Journal. 2(3): 447-474.

    Singleton V. L. & Rossi J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 16(3): 144-158.

    Smida I., Sweidan A., Souissi Y., Rouaud I., Sauvager A., Torre F., Calvert V., Le Petit J. & Tomasi S. (2018). Anti-acne, antioxidant and cytotoxic properties of Ludwigia peploides leaf extract. International Journal of Pharmacognosy and Phytochemical Research. 10(7): 271-278.

    Sofowora A. (1996). Medicinal plants and traditional medicine in Africa. Karthala.

    Suzuki Y., Saijo H., Takahashi K., Kofujita H. & Ashitani T. (2018). Growth-inhibitory components in Sugi (Cryptomeria japonica) extracts active against Microcystis aeruginosa. Cogent Environmental Science. 4(1): 1466401.

    Tebaa L., Douma M., Tazart Z., Manaut N., Mouhri K. & Loudiki M. (2017). Algicidal effects of Achillea ageratum L. and Origanum compactum Benth. plant extracts on growth of Microcystis aeruginosa. Applied Ecology and Environmental Research. 15(4): 719-728.

    Trang T. T. T., Ha L. T. N., Ai D. T. T., Hien N. T., Tram N. T. T. & Huyen V. T. (2022). Phytochemical Analysis and Antioxidant and Alpha-glucosidase Inhibitory Activities of the Stem Bark of Dialium cochinchinense Pierre. Vietnam Journal of Agricultural Sciences. 5(1): 1375-1388.

    US. EPA (1989). Green Algal, Selenastrum capricornutum, growth test method 1003.0. In: Weber C. I., Peltier W. H., Norberg-King T. J., Horning W. B., Kessler F. A., Menkedick J. R., Neiheisel T. W., Lewis P. A., Klemm D. J., Pickering Q. H., Robinson E. L., Lazorchak J. M., Wymer L. J. & Freyberg R. W. (Eds.) (1989). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms (2nd ed.). U.S. Environmental Protection Agency, Cincinnati, Ohio.

    Van Nguyen Q., Tran T. H., Pham T. N., Van Thuoc D., Cao V. D. & Boo K. H. (2019). Inhibitory effects of Bidens pilosa plant extracts on the growth of the bloom-forming alga Microcystis aeruginosa. Water, Air and Soil Pollution. 230: 1-16.

    Wu S.-J., Ng L.-T., Wang G.-H., Huang Y.-J., Chen J.-L. & Sun F.-M. (2010). Chlorophyll a, an active anti-proliferative compound of Ludwigia octovalvis, activates the CD95 (APO-1/CD95) system and AMPK pathway in 3T3-L1 cells. Food and Chemical Toxicology. 48(2): 716-721.

    Yakob H. K., Sulaiman S. F. & Uyub A. M. (2012). Antioxidant and antibacterial activity of Ludwigia octovalvis on Escherichia coli O157: H7 and some pathogenic bacteria. World Applied Sciences Journal. 16: 22-29.

    Yakob H. K., Uyub A. M. & Sulaiman S. F. (2015). Immune-stimulating properties of 80% methanolic extract of Ludwigia octovalvis against Shiga toxin-producing E. coli O157: H7 in Balb/c mice following experimental infection. Journal of Ethnopharmacology. 172: 30-37.

    Yang L., Jiang J. G., Li W. F., Chen J., Wang D. Y. & Zhu L. (2009). Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. Journal of Separation Science. 32(9): 1437-1444.

    Zhang T.-T., Zheng C.-Y., Hu W., Xu W.-W. & Wang H.-F. (2010). The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa. Journal of Applied Phycology. 22(1): 71-77.