Digestibility of Different Plant-derived Oils and their Influence on Fatty Acid Composition in the Liver and Muscle of Juvenile Common Carp (Cyprinus Carpio)

Nguyen Thi Mai 1 , Patrick Kestemont 2 , Julie Mellery 3 , Yvan Larondelle 3 , Syaghalirwa N.M. Mandiki 2 and Nang Thu Tran Thi 1

1Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
2Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur 5080, Belgium
3Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve 1348, Belgium
Received: Oct 30, 2021 /
Revised: Sep 30, 2022 /
Published: Sep 30, 2022

Main Article Content

Full-Text | pdf

Abstract

We evaluated the digestibility of plant oils and their influence on the growth of and fatty acid composition in common carp. Apparent digestibility coefficients (ADC) of lipids were determined in carp (200.2 ± 40.0g) fed with cod liver oil (CLO), linseed oil (LO), sunflower oil (SFO), or sesame oil (SO). A 96-day growth trial was then conducted using six isolipidic (from 100 to 101 g/kg diet) diets, namely CLO, LO, SFO, SO, and two blends of plant oils (SLO = SO + LO; SSFO = SO + SFO). Lipid ADC values (0.920-0.972) were similar or slightly lower in the plant oil-based diets than in the CLO-based diet. Growth and feed efficiency (FE) were not influenced by dietary lipids. The fatty acid profile in the liver and muscle reflected those of the dietary lipids. The EPA and DHA proportions were higher in the liver and muscle of the LO and SLO-fed fish than in the other plant oil groups, and lower than in CLO-fed fish (P <0.05). Higher EPA, DHA, and n3/n6 ratio levels in the muscle of fish fed on the linseed oil (LO) diet, as compared to those in fish fed on the other plant oil-based diets, were ideal for human health and suggest that it can be used as a suitable alternative to fish oil.

Keywords: Common carp, vegetable oil, fatty acid profile

Article Details

How to Cite
Mai, N., Kestemont, P., Mellery, J., Larondelle, Y., Mandiki, S., & Tran Thi, N. (2022). Digestibility of Different Plant-derived Oils and their Influence on Fatty Acid Composition in the Liver and Muscle of Juvenile Common Carp (Cyprinus Carpio). Vietnam Journal of Agricultural Sciences, 5(3), 1537-1550. https://doi.org/10.31817/vjas.2022.5.3.03

References

    Abboudi T., Mambrini M., Larondelle Y. & Rollin X. (2009). The effect of dispensable amino acids on nitrogen and amino acid losses in Atlantic salmon (Salmo salar) fry fed a protein-free diet. Aquaculture. 289: 327-333. DOI: 10.1016/j.aquaculture.2009.01.031.
    AOAC (1995). Official methods of analysis of AOAC International, 16th ed., Association of Official Analysis Chemists International. Washington, DC, USA: Association of Official Analytical Chemists. DOI: 10.3109/15563657608988149.
    Asghar A. & Majeed M. N. (2013). Chemical characterization and fatty acid profile of different sesame verities in Pakistan. American Journal of Scientific and Industrial Research. 4: 540-545. DOI: 10.5251/ajsir.2013.4.6.540.545.
    Bhardwaj K., Verma N., Trivedi R. K., Bhardwaj S. & Shukla N. (2016). Review article: Significance of ratio of omega-3 and omega-6 in human health with special reference to flaxseed oil. International Journal of Biological Chemistry. 10: 1-6. DOI: 10.3923/ijbc.2016.1.6.
    Bligh E. G. & Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Can. Journal of Physiology and Biochemistry. 37: 911-917. DOI: 10.1139/cjm2014-0700.
    Böhm M., Schultz S., Koussoroplis A.-M. & Kainz M. J. (2014). Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L.). PLoS One. 9: e94759. DOI: 10.1371/journal.pone.0094759.
    Burghardt P. R., Kemmerer E. S., Buck B. J., Osetek A. J., Yan C., Koch L. G., Britton S. L. & Evans S. J. (2010). Dietary n-3:n-6 fatty acid ratios differentially influence hormonal signature in a rodent model of metabolic syndrome relative to healthy controls. Nutrition and Metabolism. 7: 1-6. DOI: 10.1186/1743-7075-7-53.
    Castro C., Couto A., Pérez-Jiménez A., Serra C. R., Díaz-Rosales P., Fernandes R., Corraze G., Panserat S. & Oliva-Teles A. (2016). Effects of fish oil replacement by vegetable oil blend on digestive enzymes and tissue histomorphology of European sea bass (Dicentrarchus labrax) juveniles. Fish Physiology and Biochemistry 42: 203-217. DOI: 10.1007/s10695-015-0130-1.
    Castro T., Martinez D., Isabel B., Cabezas A. & Jimeno V. (2019). Vegetable oils rich in polyunsaturated fatty acids supplementation of dairy cows’ diets: Effects on productive and reproductive performance. Animals. 9: 205. DOI : 10.3390/ani9050205.
    Choubert G., De la Noüe J. & Luquet P. (1982). Digestibility in fish: Improved device for the automatic collection of feces. Aquaculture. 29: 185-189. DOI: 10.1016/0044-8486(82)90048-5.
    Christie W. W. (1982). The analysis of fatty acids, in: Lipid Analysis. Pergamon Press, Oxford: 73-90.
    Cornet V., Ouaach A., Mandiki S. N. M., Flamion E., Ferain A., Van Larebeke M., Lemaire B., Reyes López F. E., Tort L., Larondelle Y. & Kestemont P. (2018). Environmentally-realistic concentration of cadmium combined with polyunsaturated fatty acids enriched diets modulated non-specific immunity in rainbow trout. Aquat. Toxicol. 196: 104-116. DOI: 10.1016/j.aquatox.2018.01.012.
    Czarnocki J., Sibbald I. R. & Evans E. V. (1961). The determination of chromic oxide in samples of feed and excreta by acid digestion and spectrophotometry. Canadian Veterinary Journal. 41: 167-179.
    European Commission (1998). Commission directive 98/64/EC, L257/14 Official Journal of the European communities. Europe.
    Folch J., Lees M. & Stanley G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry. 226: 497-509. DOI: 10.1007/s10858-011-9570-9.
    Francis D. S., Turchini G. M., Jones P. L. & De Silva S. S. (2007). Effects of fish oil substitution with a mix blend vegetable oil on nutrient digestibility in Murray cod, Maccullochella peelii peelii. Aquaculture. 269: 447-455. DOI: 10.1016/j.aquaculture.2007.05.021.
    Geay F., Ferraresso S., Zambonino-Infante J. L., Bargelloni L., Quentel C., Vandeputte M., Kaushik S., Cahu C. L. & Mazurais D. (2011). Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics. 12: 522. DOI: 10.1186/1471-2164-12-522.
    Geay F., Wenon D., Mellery J., Tinti E., Mandiki S. N. M., Tocher D. R., Debier C., Larondelle Y. & Kestemont P. (2015). Dietary linseed oil reduces growth while differentially impacting LC-PUFA synthesis and accretion into tissues in Eurasian perch (Perca fluviatilis). Lipids. 50: 1219-1232. DOI: 10.1007/s11745-015-4079-8.
    Gómez Candela C., Bermejo López L. M. & Loria Kohen V. (2011). Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutricion Hospitalaria. 26: 323-329. DOI: 10.3305/nh.2011.26.2.5117.
    Haugen T., Kiessling A., Olsen R. E., Rørå M. B., Slinde E. & Nortvedt R. (2006). Seasonal variations in muscle growth dynamics and selected quality attributes in Atlantic halibut (Hippoglossus hippoglossus L.) fed dietary lipids containing soybean and/or herring oil under different rearing regimes. Aquaculture. 261: 565-579. DOI: 10.1016/j.aquaculture.2006.08.012.
    Hong H., Zhou Y., Wu H., Luo Y. & Shen H. (2014). Lipid content and fatty acid profile of muscle, brain and eyes of seven freshwater fish: A comparative study. JAOCS, J. Am. Oil Chem. Soc. 91: 795-804. DOI: 10.1007/s11746-014-2414-5.
    Kutluyer F., Sirkecioğlu A. N., Aksakal E., Aksakal F. İ., Tunç A. & Günaydin E. (2017). Effect of dietary fish oil replacement with plant oils on growth performance and gene expression in juvenile rainbow trout (Oncorhynchus mykiss). Annals of Animal Science. 17: 1135-1153. DOI: 10.1515/aoas-2017-0010.
    Ma H., Jin M., Zhu T, Li C., Lu Y., Yuan Y., Xiong J., Zhou Q. (2018). Effect of dietary arachidonic acid levels on growth performance, fatty acid profiles and lipid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture. 486: 31-41. DOI: 10.1016/j.aquaculture.2017.11.055.
    Mellery, J., Brel, J., Dort, J., Geay, F., Kestemont, P., Francis, D.S., Larondelle, Y. & Rollin, X. (2017). A n-3 PUFA depletion applied to rainbow trout fry (Oncorhynchus mykiss) does not modulate its subsequent lipid bioconversion capacity. British Journal of Nutrition 117: 187-199. DOI: 10.1017/S0007114516004487.
    Menoyo, D., Lopez-Bote, C.J., Bautista, J.M. & Obach, A. (2003). Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids. Aquaculture. 225: 295-307. DOI: 10.1016/S0044-8486(03)00297-7.
    Nayak M., Saha, A., Pradhan, A., Samanta, M. & Giri, S.S. (2017). Dietary fish oil replacement by linseed oil: Effect on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (Puntius gonionotus) fingerlings. Comparative Biochemistry and Physiology - B Biochem. Mol. Biol. DOI: 10.1016/j.cbpb.2016.11.009.
    Nguyen T. M., Mandiki S. N. M., Gense C., Tran T. N. T., Nguyen T. H. & Kestemont P. (2019a). A combined in vivo and in vitro approach to evaluate the influence of linseed oil or sesame oil and their combination on innate immune competence and eicosanoid metabolism processes in common carp (Cyprinus carpio). Dev. Comp. Immunol. 102: 103448. DOI: 10.1016/j.dci.2019.103488.
    Nguyen T. M., Mandiki S. N. M., Salomon J. M. A. J., Baruti J. B., Nang Thu N. T., Nguyen T. H., Nhu T. Q. & Kestemont P. (2021). Pro- and anti-inflammatory responses of common carp Cyprinus carpio head kidney leukocytes to E. coli LPS as modified by different dietary plant oils. Developmental and Comparative Immunology. 114: 103828. DOI: 10.1016/j.dci.2020.103828.
    Nguyen T. M., Mandiki S. N. M., Tran T. N. T., Larondelle Y., Mellery J., Mignolet E., Cornet V., Flamion E. & Kestemont P. (2019b). Growth performance and immune status in common carp Cyprinus carpio as affected by plant oil-based diets complemented with β -glucan. Fish Shellfish Immunol. 92: 288-299. DOI: 10.1016/j.fsi.2019.06.011.
    Nowak D., & Jakubczyk E. (2020). The freeze-drying of foods the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods. 9(10). DOI: 10.3390/foods9101488.
    NRC (2011). Nutrient Requirements of Fish and Shrimp. Washington, DC: The National Academies. DOI: 10.17226/13039.
    Oliva-Teles A. (2012). Nutrition and health of aquaculture fish. Journal of Fish Diseases. 35: 83-108. DOI: 10.1111/j.1365-2761.2011.01333.x.
    Orsavova J., Misurcova L., Vavra Ambrozova J., Vicha R. & Mlcek J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences. 16: 12871-12890. DOI:10.3390/ijms160612871.
    Paulino R. R., Pereira R. T., Fontes T. V., Oliva-Teles A., Peres H., Carneiro D. J. & Rosa P. V. (2018). Optimal dietary linoleic acid to linolenic acid ratio improved fatty acid profile of the juvenile tambaqui (Colossoma macropomum). Aquaculture. 488: 9-16. DOI: 10.1016/j.aquaculture.2018.01.014.
    Peng X., Li F., Lin S. & Chen Y. (2016). Effects of total replacement of fish oil on growth performance, lipid metabolism and antioxidant capacity in tilapia (Oreochromis niloticus). Aquaculture International. 24: 145-156. DOI: 10.1007/s10499-015-9914-7.
    Peterson D. B., Fisher K., Carter R. D. & Mann J. (1994). Fatty acid composition of erythrocytes and plasma triglyceride and cardiovascular risk in Asian diabetic patients. Lancet. 343: 1528-1530. DOI: 10.1016/S0140-6736(94)92937-8.
    Popa V.-M., Gruia A., Raba D.-N., Dumbrava D., Moldovan C., Bordean D. & Mateescu C. (2012). Fatty acids composition and oil characteristics of linseed (Linum Usitatissimum L.) from Romania. Journal of Agroalimentary Processes and Technologies. 18: 136-140.
    Ren H., Yu J., Xu P. & Tang, Y. (2015). Single nucleotide polymorphisms of Δ6-desaturase and Elovl5 segments and their associations with common carp (Cyprinus carpio) growth traits. Genetics and Molecular Research. 14 : 12848-12854. DOI : 10.4238/2015.October.21.4.
    Ren H. T., Yu J. H., Xu P. & Tang Y. K. (2012). Influence of dietary fatty acids on muscle fatty acid composition and expression levels of δ6 desaturase-like and Elovl5-like elongase in common carp (Cyprinus carpio var. Jian). Comparative Biochemistry & Physiology - Part B. Biochemistry and Molecular Biology. 163: 184-192. DOI: 10.1016/j.cbpb.2012.05.016.
    Sales-Campos H., Reis de Souza P., Crema Peghini B., Santana da Silva J. & Ribeiro Cardoso C. (2013). An overview of the modulatory effects of oleic acid in health and disease. Mini-Reviews Medicinal Chemistry 13: 201-210. DOI: 10.2174/1389557511313020003.
    Sourabié A., Mandiki S.N.M., Geay F., Sene T., Toguyeni A. & Kestemont P. (2018). Fish proteins not lipids are the major nutrients limiting the use of vegetable ingredients in catfish nutrition. Aquaculture. Nutrition 1-13. DOI: 10.1111/anu.12676.
    Stancheva M. & Merdzhanova A. (2011). Fatty acid composition of common carp, rainbow trout and grey mullet fish species. Journal of Agricultural Science and Technology. 3: 285-289.
    Thanuthong T., Francis D. S., Senadheera S. D., Jones P. L. & Turchini G. M. (2011). Fish oil replacement in rainbow trout diets and total dietary PUFA content: I) Effects on feed efficiency, fat deposition and the efficiency of a finishing strategy. Aquaculture. 320: 82-90. DOI: 10.1016/j.aquaculture.2011.08.007.
    Ti W. M., Ong M. K. & Teoh C. Y. (2019). Assessment on the effects of dietary fatty acids on growth performance, body compositions, plasma lysozyme activity and sensorial quality of juvenile marble goby, Oxyeleotris marmorata. Aquaculture Reports. 14: 100186. DOI: 10.1016/j.aqrep.2019.100186.
    Tocher D., Dick J., MacGlaughlin P. & Bell J. (2006). Effect of diets enriched in Δ6 desaturated fatty acids (18:3n - 6 and 18:4n - 3), on growth, fatty acid composition and highly unsaturated fatty acid synthesis in two populations of Arctic charr (Salvelinus alpinus L.). Comparative Biochemistry and Physiology B. 144: 245-253. DOI: 10.1016/j.cbpb.2006.03.001.
    Tocher D. R. (2015). Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 449: 94-107. DOI: 10.1016/J.Aquaculture.2015.01.010.
    Tocher D. R., Betancor M. B., Sprague M., Olsen R. E. & Napier J. A. (2019). Omega-3 long-chain
    polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand. Nutrients. 11: 1-20. DOI: 10.3390/nu11010089.
    Torrecillas S., Mompel D., Caballero M. J., Montero D., Merrifield D., Rodiles A., Robaina L., Zamorano M. J., Karalazos V., Kaushik S. & Izquierdo M. (2017). Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture. 468: 386-398. DOI: 10.1016/j.aquaculture.2016.11.005.
    Torstensen B. E., Bell J. G., Rosenlund G., Henderson R. J., Graff I. E., Tocher D. R., Lie Ø. & Sargent J. R. (2005). Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. Journal of Agricultural and Food Chemistry. 53: 10166-10178. DOI: 10.1021/jf051308i.
    Yildirim Ö., Acar U., Türker A., Sunar M. C. & Yilmaz S. (2013). Effects of partial or total replacement of fish oil by unrefined peanut oil on growth and chemical composition of common carp (Cyprinus carpio). Israeli Journal of Aquaculture – Bamidgeh. 65: 6 pages.
    Zupan B., Ljubojevic D., Pelic M., Cirkovic M., Dordevic V. & Bogut I. (2016). Common carp response to the different concentration of linseed oil in diet. Slovenian Veterinary Research. 53: 19-28.