Association between the MUC4 g.243A>G Polymorphism and Production Performance of Landrace and Yorkshire Pigs in Vietnam

Do Duc Luc 1 , Nguyen Hoang Thinh 1 , Ha Xuan Bo 1 , Do Thi Phuong 2 , Phan Thi Tuoi 3 , Vu Dinh Ton 3 and Frederic Farnir 4

1Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
2Asia Livestock Innovation Center, Sunjin Vina Co., Ltd, Ha Nam Branch, Ha Nam 400000, Vietnam
3Faculty of Agriculture – Forestry - Fishery, Hong Duc University, Thanh Hoa 441539, Vietnam
4Unit of Biostatistics, Bioinformatics, Economics, Animal Selection, University of Liège, Liège 4000, Belgium
Received: Apr 12, 2022 /
Revised: Mar 29, 2023 /
Published: Mar 29, 2023

Main Article Content

Full-Text | pdf

Abstract

Porcine mucin 4 (MUC4) is a candidate gene for controlling the adhesion of the enterotoxigenic Escherichia coli (ETEC) F4 receptor. Polymorphisms of the MUC4 gene have been used as markers to identify the susceptibility of neonatal diarrhea in piglets for breeding selection. The objective of this study was to evaluate the effects of MUC4 g.243A>G polymorphisms on the production traits of Landrace and Yorkshire pigs in Vietnam. A total of 1,057 Landrace and 1,361 Yorkshire piglets were used to estimate the allelic and genotypic frequencies of the polymorphisms. Body weights at birth, at weaning, at initial fattening (IBW), and at the end of fattening period (FBW), backfat thickness (BFT), and depth of the longissimus dorsi muscle (DLD) were measured and lean meat percentage was estimated. Frequency of the susceptibility allele A to ETEC was higher than the resistance allele G for both breeds based on genotyping piglet tails collected at birth. The AA, AG, and GG genotypes were present in Yorkshire while GG was not found in Landrace. The production traits were not affected (P >0.05) by MUC4 polymorphisms except BFT and DLD (P <0.05). There were interactions between gender and MUC4 genotype (P <0.05) for IBW, FBW, average daily gain, and DLD. These traits of GG males were significantly higher than those of GG females (P <0.05). The results suggest that selecting pigs carrying the GG genotype of MUC4, known as providing resistance to ETEC, do not negatively affect productive performance in Landrace and Yorkshire pigs.

Keywords: Swine, growth, polymorphisms, diarrhea resistance

Article Details

How to Cite
Luc, D., Thinh, N., Bo, H., Phuong, D., Tuoi, P., Ton, V., & Farnir, F. (2023). Association between the MUC4 g.243A&gt;G Polymorphism and Production Performance of Landrace and Yorkshire Pigs in Vietnam. Vietnam Journal of Agricultural Sciences, 6(1), 1711-1718. https://doi.org/10.31817/vjas.2023.6.1.02

References

    Balcells I., Castelló A., Mercadé A., Noguera J. L., Fernández-Rodríguez A., Sànchez A. & Tomàs A. (2011). Analysis of porcine MUC4 gene as a candidate gene for prolificacy QTL on SSC13 in an Iberian× Meishan F 2 population. BMC Genetics. 12(1): 93.
    Fairbrother J. M., Nadeau E. & Gyles C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews. 6(1): 17-39.
    Fontanesi L., Bertolini F., Dall'Olio S., Buttazzoni L., Gallo M. & Russo V. (2012). Analysis of association between the MUC4 g. 8227C> G polymorphism and production traits in Italian heavy pigs using a selective genotyping approach. Animal Biotechnology. 23(3): 147-155.
    Geraci C., Varzandi A. R., Schiavo G., Bovo S., Ribani A., Utzeri V. J., Galimberti G., Buttazzoni L., Ovilo C., Gallo M., Dall'Olio S. & Fontanesi L. (2019). Genetic markers associated with resistance to infectious diseases have no effects on production traits and haematological parameters in Italian Large White pigs. Livestock Science. 223: 32-38.
    Jacobsen M., Cirera S., Joller D., Esteso G., Kracht S. S., Edfors I., Bendixen C., Archibald A. L., Vogeli P. & Neuenschwander S. (2011). Characterisation of five candidate genes within the ETEC F4ab/ac candidate region in pigs. BMC Research Notes. 4(1): 225.
    Joller D., Jørgensen C. B., Bertschinger H., Python P., Edfors I., Cirera S., Archibald A., Bürgi E., Karlskov‐Mortensen P. & Andersson L. (2009). Refined localization of the Escherichia coli F4ab/F4ac receptor locus on pig chromosome 13. Animal Genetics. 40(5): 749-752.
    Jørgensen C., Cirera S., Anderson S., Archibald A., Raudsepp T., Chowdhary B., Edfors-Lilja I., Andersson L. & Fredholm M. (2003). Linkage and comparative mapping of the locus controlling susceptibility towards E. coli F4ab/ac diarrhoea in pigs. Cytogenetic and Genome Research. 102(1-4): 157-162.
    Kim Y. J., Kim J. H., Hur J. & Lee J. H. (2010). Isolation of Escherichia coli from piglets in South Korea with diarrhea and characteristics of the virulence genes. Canadian Journal of Veterinary Research - Revue canadienne de recherche veterinaire. 74(1): 59-64.
    Liu Y., Yin X. M., Xia R. W., Huo Y. J., Zhu G. Q., Wu S. L. & Bao W. B. (2015). Association between the MUC4 g. 243A> G polymorphism and immune and production traits in Large White pigs. Turkish Journal of Veterinary and Animal Sciences. 39(2): 141-146.
    Luise D., Lauridsen C., Bosi P. & Trevisi P. (2019). Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. Journal of Animal Science and Biotechnology. 10(1): 53.
    Ministère des classes moyennes et de l’agriculture de Belgique (1999). Arrêté ministériel relatif au classement des carcasses de porcs, 03 mai 1999 [Online]. Bruxelles: Ministère des Classes Moyennes et de l’Agriculture. Retrieved from http://www.ejustice.just.fgov.be/doc/rech_f.htm on May 12, 2020.
    Peng Q. L., Ren J., Yan X. M., Huang X., Tang H., Wang Y. Z., Zhang B. & Huang L. S. (2007). The g.243A>G mutation in intron 17 of MUC4 is significantly associated with susceptibility/resistance to ETEC F4ab/ac infection in pigs. Animal Genetics. 38(4): 397-400.
    Sambrook J., Fritsch E. & Maniatis T. (1989). Molecular Cloning: A Laboratory Manual (2nd ed.). New York: Cold Spring Harbor Press.
    SAS (1989). SAS/STAT. User’s Guide, Version 6, 4th Edition. SAS Institute. Cary, NC.
    Sterndale S. O., Evans D. J., Mansfield J. P., Clarke J., Sahibzada S., Abraham S., O’Dea M., Miller D. W., Kim J. C. & Pluske J. R. (2019). Effect of mucin 4 allele on susceptibility to experimental infection with enterotoxigenic F4 Escherichia coli in pigs fed experimental diets. Journal of Animal Science and Biotechnology. 10(1): 56.
    Vu-Khac H., Holoda E., Pilipcinec E., Blanco M., Blanco J. E., Dahbi G., Mora A., López C., González E. A. & Blanco J. (2007). Serotypes, virulence genes, intimin types and PFGE profiles of Escherichia coli isolated from piglets with diarrhoea in Slovakia. The Veterinary Journal. 174(1): 176-187.
    Yan X., Ren J., Huang X., Zhang Z., Ouyang J., Zeng W., Zou Z., Yang S., Yang B. & Huang L.-S. (2009). Comparison of production traits between pigs with and without the Escherichia coli F4 receptors in a White Duroc× Erhualian intercross F2 population. Journal of Animal Science. 87(1): 334-339.