Evaluation of Biological Traits and Bioactive Compounds in Several Spinach Varieties (Spinacia oleracea L.) grown in a Vertical Hydroponic System

Khanh Le Nguyen 1 , Nguyen The Ngoc Phuong 1 , Tran Quoc Tuan 1 and Tran Thi Minh Hang 2

1Faculty of Agricultural Technology, VNU of Engineering and Technology, Hanoi 122000, Vietnam
2Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
Received: Oct 21, 2022 /
Revised: Mar 29, 2023 /
Published: Mar 29, 2023

Main Article Content

Full-Text | pdf


The implementation of breeding programs for indoor vertical farms has been increasing to provide new varieties that have higher nutritional contents and morphological traits fitted to these sustainable production systems. Spinach (Spinacia oleracea L.) is one of the fastest-growing, nutrient-dense leafy vegetables to grow indoors. In Vietnam, market demand for spinach is growing together with the expansion of soilless cultivation technologies such as hydroponics and vertical farming. This research aimed to evaluate the growth parameters, initially screening the relationship between yield and biological traits, of 12 spinach varieties. In addition, this research also aimed to evaluate the lutein, vitamin C, total flavonoid, and carbohydrate contents in different varieties of spinach and their correlations with morphological traits. The research outcomes revealed significant positive correlations between plant weight and leaf area. Three spinach varieties belonging to the smooth leaf type (“AD”, “CH”, and “DT”) were the top three yielding under low light conditions. There were significant differences in the lutein content among varieties. “Red” and “Mikado” were the two highest varieties for lutein content. Vitamin C and total flavonoid contents were statistically similar in the tested varieties, while the carbohydrate content was slightly different among them. This research firstly suggested better suited spinach varieties to be grown in vertical farming conditions, and secondly, provided breeders information on trait identifications to prepare breeding materials for vertical farms

Keywords: Spinach, vertical farm, morphological trait, bioactive compounds

Article Details

How to Cite
Nguyen, K., Phuong, N., Tuan, T., & Hang, T. (2023). Evaluation of Biological Traits and Bioactive Compounds in Several Spinach Varieties (Spinacia oleracea L.) grown in a Vertical Hydroponic System. Vietnam Journal of Agricultural Sciences, 6(1), 1699-1710. https://doi.org/10.31817/vjas.2023.6.1.01


    Albalasmeh A. A., Berhe A. A. & Ghezzehei T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers. 97(2): 253-261.
    Bantis F., Fotelli M., Ilić Z. S. & Koukounaras A. (2020). Physiological and phytochemical responses of spinach baby leaves grown in a PFAL system with leds and saline nutrient solution. Agriculture (Switzerland). 10(11): 1-12. DOI: 10.3390/agriculture10110574.
    Barker A. V., Maynard D. N. & Mills H. A. (1974). Variations in nitrate accumulation among spinach cultivars. Journal of the American Society for Horticultural Science. 99(2): 132-134.
    Bergquist S. Å. M., Gertsson U. E. & Olsson M. E. (2006). Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). Journal of the Science of Food and Agriculture. 86(3): 346-355. DOI: 10.1002/jsfa.2373.
    Bergquist S., Gertsson U., Nordmark L. & Olsson M. (2007). Effects of shade nettings, sowing time and storage on baby spinach flavonoids. Journal of the Science of Food and Agriculture. 87: 2464-2471.
    Bhattarai G. & Shi A. (2021). Research advances and prospects of spinach breeding, genetics, and genomics. Vegetable Research. 1(1): 1-18. DOI: 10.48130/VR-2021-0009.
    Bian Z. H., Yang Q. C. & Liu W. K. (2015). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. Journal of the Science of Food and Agriculture. 95(5): 869-877. DOI: 10.1002/jsfa.6789.
    Butturini M. & Marcelis L. F. M. (2020). Vertical farming in Europe: Present status and outlook. Plant Factory. 77-91.
    Cai X., Sun X., Xu C., Sun H., Wang X., Ge C., Zhang Z., Wang Q., Fei Z., Jiao C. & Wang Q. (2021). Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits. Nature Communications.
    Calvo M. M. (2005). Lutein: A Valuable Ingredient of Fruit and Vegetables. Critical Reviews in Food Science and Nutrition. 45(7-8): 671-696. DOI: 10.1080/10408690590957034.
    Chitwood J., Shi A., Mou B., Evans M., Clark J., Motes D., Chen P. & Hensley D. (2016). Population structure and association analysis of bolting, plant height, and leaf erectness in spinach. HortScience. 51(5): 481-486.
    Citak S. & Sonmez S. (2010). Effects of conventional and organic fertilization on spinach (Spinacea oleracea L.) growth, yield, vitamin C and nitrate concentration during two successive seasons. Scientia Horticulturae. 126(4): 415-420.
    Conesa E., Niñirola D., Vicente M. J., Ochoa J., Bañón S. & Fernández J. A. (2008). The influence of nitrate/ammonium ratio on yield quality and nitrate, oxalate and vitamin C content of baby leaf spinach and bladder campion plants grown in a floating system. International Symposium on Soilless Culture and Hydroponics. 843: 269-274.
    Curran-Celentano J., Wenzel A. J., Kopsell D. A. & Kopsell D. E. (2007). Genetic variability for lutein concentrations in leafy vegetable crops can influence serum carotenoid levels and macular pigment optical density in human subjects. II International Symposium on Human Health Effects of Fruits and Vegetables: FAVHEALTH 2007 841. 113-118.
    den Besten J. (2019). Vertical Farming Development; the Dutch Approach. In: Anpo M., Fukuda H. & Wada T. (Eds.). Plant Factory Using Artificial Light (pp. 307-317). Elsevier. DOI: 10.1016/B978-0-12-813973-8.00027-0.
    Donnelly P. M., Bonetta D., Tsukaya H., Dengler R. E. & Dengler N. G. (1999). Cell Cycling and Cell Enlargement in Developing Leaves of Arabidopsis. Developmental Biology. 215(2): 407-419. DOI: 10.1006/dbio.1999.9443.
    Folta K. M. (2019). Breeding new varieties for controlled environments. Plant Biology. 21: 6-12. DOI: 10.1111/plb.12914.
    Frary A., Fritz L. A. & Tanksley S. D. (2004). A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theoretical and Applied Genetics. 109(3): 523-533.
    Freudenheim J. L., Marshall J. R., Vena J. E., Laughlin R., Brasure J. R., Swanson M. K., Nemoto T. & Graham S. (1996). Premenopausal breast cancer risk and intake of vegetables, fruits, and related nutrients. Journal of the National Cancer Institute. 88(6): 340-348. DOI: 10.1093/jnci/88.6.340.
    Gao W., He D., Ji F., Zhang S. & Zheng J. (2020). Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy. 10(8). DOI: 10.3390/agronomy10081082.
    Gil M. I., Ferreres F. & Tomás-Barberán F. A. (1999). Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. Journal of Agricultural and Food Chemistry. 47(6): 2213-2217.
    Heuvelink E. & Marcelis L. F. M. (2020). Trends in Plant Science Forum Vertical Farming : Moving from Genetic to Environmental Modi fi cation. Trends in Plant Science. xx(xx): 1-4. /DOI: j.tplants.2020.05.012.
    Karamat U., Sun X., Li N. & Zhao J. (2021). Genetic regulators of leaf size in Brassica crops. Horticulture Research. 8: 91. DOI: 10.1038/s41438-021-00526-x.
    Katzman L. S., Taylor A. G. & Langhans R. W. (2001). Seed enhancements to improve spinach germination. HortScience. 36(5): 979-981. DOI: 10.21273/hortsci.36.5.979.
    Kozai T. & Niu G. (2020). Challenges for the next-generation PFALs. In: Kozai T., Niu G. & Takagaki M (Eds). Plant Factory (pp. 463-469). Elsevier.
    Lefsrud M. G., Kopsell D. A., Kopsell D. E. & Curran‐Celentano J. (2006). Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiologia Plantarum. 127(4): 624-631.
    Leong R. & Urano D. (2018). Molecular Breeding for Plant Factory: Strategies and Technology BT - Smart Plant Factory: The Next Generation Indoor Vertical Farms (T. Kozai (ed.); pp. 301-323). Springer Singapore. DOI: 978-981-13-1065-2_19.
    Li J., Hikosaka S. & Goto E. (2009). Effects of light quality and photosynthetic photon flux on growth and carotenoid pigments in spinach (Spinacia oleracea L.). VI International Symposium on Light in Horticulture 907: 105-110.
    Liu Z., She H., Xu Z., Zhang H., Li G., Zhang S. & Qian W. (2021). Quantitative trait loci (QTL) analysis of leaf related traits in spinach (Spinacia oleracea L.). BMC Plant Biology. 21(1): 290. DOI: 10.1186/s12870-021-03092-5.
    Masakazu A., Hirokaza F. & Teruo W. (2019). Plant Factory Using Aritificial Light, Elsevier 2018.
    Meng S., Liu C., Xu X., Song S., Song S., Zhang Z., & Liu L. (2017). Comparison of morphological features of fruits and seeds for identifying two taxonomic varieties of Spinacia oleracea L. Canadian Journal of Plant Science. 98(2): 318-331.
    Miura M., Sakai M., Nogami M., Sato M. & Yatsushiro T. (2020). A rapid LC–MS/MS method for lutein quantification in spinach (Spinacia oleracea). Microchemical Journal. 153: 104470.
    Mou B. (2005). Genetic Variation of Beta-carotene and Lutein Contents in Lettuce. Journal of the American Society for Horticultural Science Jashs. 130(6): 870-876. DOI: 10.21273/JASHS.130.6.870.
    Mudau A. R., Araya H. T. & Mudau F. N. (2019). The quality of baby spinach as affected by developmental stage as well as postharvest storage conditions. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. 69(1): 26-35.
    Murcia M. A., Jiménez-Monreal A. M., Gonzalez J. & Martínez-Tomé M. (2020). Chapter 11 - Spinach. In: Jaiswal A. M. (Ed.). Nutritional Composition and Antioxidant Properties of Fruits and Vegetables. Academic Press. DOI: 10.1016/B978-0-12-812780-3.00011-8.
    Naznin M. T., Lefsrud M., Gravel V. & Azad M. O. K. (2019). Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, Spinach, Kale, Basil, and sweet pepper in a controlled environment. Plants. 8(4). DOI: 10.3390/plants8040093.
    Nguyen T. P. D., Jang D. C., Tran T. T. H., Nguyen Q. T., Kim I. S., Hoang T. L. H. & Vu N. T. (2021). Influence of green light added with red and blue LEDs on the growth, leaf microstructure and quality of spinach (Spinacia oleracea L.). Agronomy. 11(9): DOI: 10.3390/agronomy11091724.
    Niu G., Guo Q., Wang J., Zhao S., He Y., & Liu L. (2020). Structural basis for plant lutein biosynthesis from α-carotene. Proceedings of the National Academy of Sciences. 117(25): 14150 LP - 14157. DOI: 10.1073/pnas.2001806117.
    Ogawa A., Fujita S. & Toyofuku K. (2014). A cultivation method for lettuce and spinach with high levels of vitamin C using potassium restriction. Environmental Control in Biology. 52(2): 95-99.
    Ranawade P. S., Tidke S. D. & Kate A. K. (2017). Comparative cultivation and biochemical analysis of Spinacia oleraceae grown in aquaponics, hydroponics and field conditions. International Journal of Current Microbiology and Applied Science: 6(4): 1007-1013.
    Ribera A., Bai Y., Wolters A.-M. A., van Treuren R. & Kik C. (2020). A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica. 216(3): 48. DOI: 10.1007/s10681-020-02585-y.
    Roberts J. L. & Moreau R. (2016). Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food and Function. 7(8): 3337-3353. hDOI: 10.1039/c6fo00051g.
    Sabaghnia N., Asadi-Gharneh H. A. & Janmohammadi M. (2015). Genetic diversity of spinach (Spinacia oleracea L.) landraces collected in Iran using some morphological traits. Acta Agriculturae Slovenica. 103(1): 101-111.
    SharathKumar M., Heuvelink E., & Marcelis L. F. M. (2020). Vertical Farming: Moving from Genetic to Environmental Modification. Trends in Plant Science. 25(8): 724-727. DOI: 10.1016/j.tplants.2020.05.012.
    Shi A., Qin J., Mou B., Correll J., Weng Y., Brenner D., Feng C., Motes D., Yang W., Dong L., Bhattarai G. & Ravelombola W. (2017). Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PLOS ONE. 12(11): e0188745. DOI: 10.1371/journal.pone.0188745.
    Shraim A. M., Ahmed T. A., Rahman M. M. & Hijji Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT. 150: 111932.
    Son K.-H., Lee J.-H., Oh Y., Kim D., Oh M.-M. & In B.-C. (2017). Growth and bioactive compound synthesis in cultivated lettuce subject to light-quality changes. HortScience. 52(4): 584-591.
    Tamura A. (2004). Effect of air temperature on the content of sugar and vitamin C of spinach and komatsuna. Horticultural Research (Japan): 3(2): 187-190.
    Thi-Phuong-Dung N., Ngoc-Thang V., Quang- Thach N., Thanh-Huyen T. & Phi-Bang T. (2022). Growth and quality of hydroponic cultivated spinach (Spinacia oleracea L.) affected by the light intensity of red and blue LEDs. Sains Malaysiana. 51(2): 473-483.
    Thi N., Dung P., Thi T., Huyen T. & Jang D. C. (2020). Effects of Supplemental Green LEDs to Red and Blue Light on the Growth , Yield and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L .) in Plant Factory. 29(2): 171-180.
    van Treuren R., de Groot L., Hisoriev H., Khassanov F., Farzaliyev V., Melyan G., Gabrielyan I., van Soest L., Tulmans C. & Courand D. (2020). Acquisition and regeneration of Spinacia turkestanica Iljin and S. tetrandra Steven ex M. Bieb. to improve a spinach gene bank collection. Genetic Resources and Crop Evolution. 67(3): 549-559.
    Vickers L., Monaghan J., Beacham A. M., Vickers L. H., Monaghan J. M., Beacham A. M., Vickers L. H. & Vertical J. M. M. (2019). Vertical farming : a summary of approaches to growing skywards Vertical farming: a summary of approaches to growing skywards. The Journal of Horticultural Science and Biotechnology. 94(3): 277-283. DOI: 10.1080/14620316.2019.1574214.
    Wang L., Cheng Y., Ma Q., Mu Y., Huang Z., Xia Q., Zhang G. & Nian H. (2019). QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations. Bmc Genomics. 20(1): 1-15.
    Wang X., Cai X., Xu C., Zhao Q., Ge C., Dai S. & WangQ. (2018). Diversity of nitrate, oxalate, vitamin C and carotenoid contents in different spinach accessions and their correlation with various morphological traits. The Journal of Horticultural Science and Biotechnology. 93(4): 409-415.
    Wei X., Wang X., Guo S., Zhou J., Shi Y., Wang H., Dou D., Song X., Li G. & Ku L. (2016). Epistatic and QTL× environment interaction effects on leaf area‐associated traits in maize. Plant Breeding. 135(6): 671-676.
    Xu C., Jiao C., Sun H., Cai X., Wang X., Ge C., Zheng Y., Liu W., Sun X. & Xu Y. (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications. 8(1): 1-10.
    Zeidler C., Schubert D. & Vrakking V. (2013). Feasibility study: vertical farm EDEN. (Doctoral Dissertation, DLR Institute of Space Systems).
    Zou T., Huang C., Wu P., Ge L. & Xu Y. (2020). Optimization of artificial light for spinach growth in plant factory based on orthogonal test. Plants. 9(4). DOI: plants9040490.